
SIEMENS

Schienenverteiler -Systeme SIVACON 8PS

Totally Integrated Power - SIVACON

Ausgabe

11/2016

siemens.de/schienenverteiler

SIEMENS

Energy Management Medium Voltage & Systems Schienenverteiler SIVACON 8PS -Planen mit SIVACON 8PS

Planungshandbuch

Systemübersicht	1
Planungsgrundlagen	2
Planen mit BD2	3
Planen mit LD	4
Planen mit LI	5
Planen mit LR	6
Weiterführende Informationen zur Planung	7

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

∱GEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

∕NWARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

^VORSICHT

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung qualifiziertem Personal gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

. WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

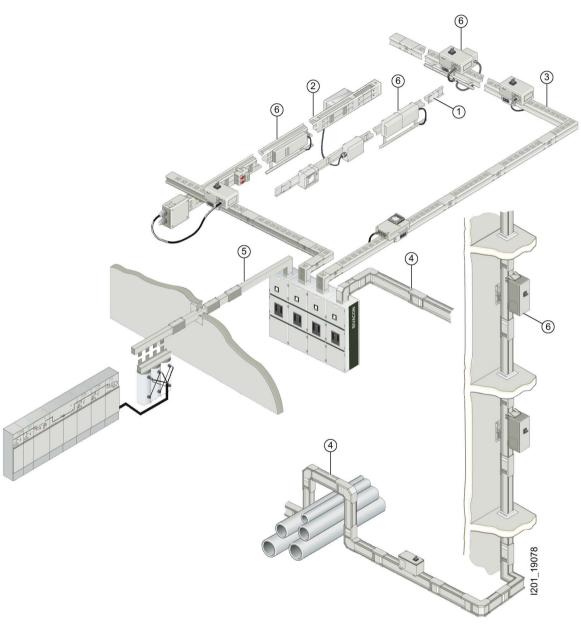
Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Inhaltsverzeichnis

1	Systemübe	ersicht	11
	1.1	Übersicht Siemens Schienenverteiler	11
	1.2	System BD01	15
	1.3	Vernetzte Schienenverteiler für Industrie und Gebäude	18
2	Planungsg	grundlagen	19
	2.1	Aufbau des Planungshandbuchs	19
	2.2 2.2.1 2.2.2 2.2.3 2.2.4	Schienenverteilerplanung Grundlagen der Schienenverteilerplanung Aufgaben und Ausführungen von Schienenverteilern Vergleich von Schienenverteilern und Kabelinstallation Leitfaden zur Planung	20 22
	2.3	Bemessungsströme und Kurzschluss-Ströme von Normtransformatoren	28
	2.4 2.4.1 2.4.2 2.4.3	Systemauswahlkriterien Technische Daten der Systeme Einsatzbereiche der Hochstromsysteme Auswahl in Abhängigkeit von Nenntransformatordaten	29 29
3	Planen mit	t BD2	35
	3.1	Systembeschreibung	35
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.5.1 3.2.5.2 3.2.6 3.2.7 3.2.8 3.2.8.1 3.2.8.2 3.2.8.3 3.2.8.4 3.2.8.5 3.2.8.6 3.2.8.6 3.2.8.6	Systemkomponenten Vorbemerkung für Leistungsverzeichnisse Typenschlüssel Gerade Schienenkästen Richtungsänderungen Einspeisekästen Endeinspeisekästen Mitteneinspeisekästen Verteilereinspeisung Kuppelkästen Abgangskästen Abgangskästen bis 25 A Abgangskästen bis 63 A Abgangskästen bis 125 A Abgangskästen bis 250 A Abgangskästen bis 250 A Abgangskästen bis 400 A Abgangskästen bis 530 A Gerätekästen	36 38 41 42 45 45 48 49 50 50 51 57 58
	3.2.10 3.2.10.1 3.2.10.2	Zusatzausrüstung Zusatzausrüstung für Schutzarterhöhung auf IP54 und IP55 Befestigungsmaterial	60

	3.3	Technische Daten	62
	3.3.1	BD2 allgemein	
	3.3.2	Abgangskästen	63
	3.3.3	Schienenkästen BD2A (Aluminium)	64
	3.3.4	Schienenkästen BD2C (Kupfer)	67
	3.3.5	Anschlussquerschnitte	70
	3.3.5.1	Einspeisungen	70
	3.3.5.2	Abgangskästen	72
	3.4	Maßzeichnungen	74
	3.4.1	Gerade Schienenkästen	74
	3.4.2	Richtungsänderungen	75
	3.4.3	Verteilereinspeisung	80
	3.4.4	Endeinspeisekästen	82
	3.4.5	Kabelräume	85
	3.4.6	Mitteneinspeisung	87
	3.4.7	Abgangskästen	
	3.4.7.1	Abgangskästen bis 25 A	
	3.4.7.2	Abgangskästen bis 63 A	
	3.4.7.3	Abgangskästen bis 125 A	
	3.4.7.4	Abgangskästen bis 250 A	
	3.4.7.5	Abgangskästen bis 530 A	
	3.4.8	Gerätekästen	
	3.4.9	Zusatzausrüstung	100
4	Planen mit	t LD	105
	4.1	Systembeschreibung	105
	4.2	Systemkomponenten	106
	4.2.1	Vorbemerkung für Leistungsverzeichnisse	
	4.2.2	Typenschlüssel	
	4.2.3	Baugrößen, Leiterkonfigurationen und Aufbau des Schienenpakets	
	4.2.4	Gerade Schienenkästen	
	4.2.5	Richtungsänderungen	115
	4.2.6	Verteileranbindung für Siemens-Energieverteiler	117
	4.2.7	Anschluss-Stück für Fremdverteiler	118
	4.2.8	Anschluss-Stück für Transformatoren und Verteiler	119
	4.2.9	Kabeleinspeisung	
	4.2.10	Kuppelkästen	121
	4.2.11	Abgangskästen	122
	4.2.11.1	Abgangskästen	
	4.2.11.2	Abgangskästen mit Sicherungslasttrennschalter	
	4.2.11.3	Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter	
	4.2.11.4	Abgangskästen mit Leistungsschaltern	
	4.2.12	Zusatzausrüstung	127
	4.3	Technische Daten	
	4.3.1	LD allgemein	
	4.3.2	Schienenkästen LDA.4 (4-polig, Aluminium)	
	4.3.3	Schienenkästen LDA.6 (5-polig, Aluminium)	
	4.3.4	Schienenkästen LDC.4 (4-polig, Kupfer)	
	4.3.5	Schienenkästen LDC.6 (5-polig, Kupfer)	
	4.3.6	Einspeisungen	
	4.3.7	Abgangskästen mit Sicherungslasttrennschalter	144


	4.3.8 4.3.9	Störlichtbogensichere Abgangskästen mit SicherungslasttrennschalterAbgangskästen mit Leistungsschalter	
	4.4	Gewichte	149
	4.4.1	Schienenkästen	149
	4.5	Maßzeichnungen	150
	4.5.1	Schienenkästen	150
	4.5.2	Abgangskästen mit Sicherungslasttrennschalter	151
	4.5.3	Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter	
	4.5.4	Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter	
	4.5.5	Abgangskästen mit Leistungsschalter	
	4.5.6	Zusatzausrüstung	158
5	Planen m	it LI	159
	5.1	Systembeschreibung	159
	5.2	Systemkomponenten	160
	5.2.1	Vorbemerkung für Leistungsverzeichnisse	
	5.3	Konformität und Prüfungsnachweise	161
	5.3.1	Typenschlüssel	
		• •	
	5.4	Leiterkonfiguration	
	5.4.1	Gerade Schienenkästen	
	5.4.2	Richtungsänderungen	
	5.4.3	Verteileranbindung für Siemens-Energieverteiler	
	5.4.4	Anschluss-Stück für Fremdverteiler	
	5.4.5	Anschluss-Stück für Transformatoren und Verteiler	
	5.4.6	Kabeleinspeisung	
	5.4.7	Abgangskästen	
	5.4.7.1	Allgemeines	
	5.4.7.2	Abgangskästen mit Sicherungsunterteil bis 630 A	
	5.4.7.3	Abgangskästen mit Sicherungslasttrennschalter bis 630 A	
	5.4.7.4	Abgangskästen mit Lasttrennschalter mit Sicherungen bis 630 A	
	5.4.7.5	Abgangskästen mit Leistungsschalter bis 1250 A	
	5.4.7.6	Leerabgangskästen bis 630 A	
	5.4.8	Zusatzausrüstung	195
	5.5	Technische Daten	197
	5.5.1	LI allgemein	197
	5.5.2	Schienenkästen LI-A (4-polig aus Aluminium)	199
	5.5.3	Schienenkästen LI-A (5-polig, Aluminium)	201
	5.5.4	Schienenkästen LI-C (4-polig, Kupfer)	203
	5.5.5	Schienenkästen LI-C (5-polig, Kupfer)	205
	5.5.6	Brandlast für Schienenkästen ohne Abgangstellen	207
	5.5.7	Befestigungsabstände	208
	5.5.8	Fremdverteileranschluss-Stücke	209
	5.5.9	Abgangskästen	210
	5.6	Maßzeichnungen	
	5.6.1	Schienenkästen	
	5.6.2	Abgangskästen	
	5.6.3	Zusatzausrüstung	
	5.6.3.1 5.6.3.2	Befestigung für horizontale Strangführung Befestigungsbügel für vertikale Strangführung	
	IJ.D.J.∠	Delegiquitusdudet tut vertikale oltahuhhhung	

6	Planen m	Planen mit LR		
	6.1	Systembeschreibung	235	
	6.2	Systemkomponenten	236	
	6.2.1	Vorbemerkung für Leistungsverzeichnisse		
	6.2.2	Typenschlüssel		
	6.2.3	Baugrößen und Aufbau des Systems		
	6.2.4	Leiterkonfiguration und Baugrößen		
	6.2.5	Gerade Schienenkästen		
	6.2.6	Richtungsänderungen		
	6.2.7	Verteileranbindung für Siemens-Energieverteiler		
	6.2.8	Anschluss-Stück für Fremdverteiler		
	6.2.9	Anschluss-Stück für Transformatoren und Verteiler		
	6.2.10	Kabeleinspeisung		
	6.2.11	Abzweige für Energieverteilung		
	6.2.12	Zusatzausrüstung		
		•		
	6.3	Technische Daten		
	6.3.1	LR allgemein		
	6.3.2	Schienenkästen LRA41 (4-polig, Aluminium)		
	6.3.3	Schienenkästen LRA51 (5-polig, Aluminium)		
	6.3.4	Schienenkästen LRC41 (4-polig, Kupfer)	259	
	6.3.5	Schienenkästen LRC51 (5-polig, Kupfer)	262	
	6.4	Maßzeichnungen	265	
	6.4.1	Gerade Schienenelemente LR		
_	-			
7		nrende Informationen zur Planung		
	7.1	Dimensionierung und Auswahl		
	7.1.1	Ermittlung des Spannungsfalls		
	7.1.2	Überlast- und Kurzschluss-Schutz		
	7.1.3	Schleifenimpedanz		
	7.1.4	Schutzarten für Schienenverteiler	272	
	7.1.5	Schutzarten elektrischer Betriebsmittel gemäß IEC / EN 60529	273	
	7.1.6	Hinweise zu Leerabgangskästen bis 630 A	274	
	7.1.7	Verteilungssysteme	275	
	7.2	Planungsbeispiel	278	
	7.3	Funktionserhalt	280	
	7.3.1	Geltende Vorschriften		
	7.3.2	Ausführungen		
	7.4	Brandschottung	285	
	7.4.1	Schienenverteiler mit Brandschottung		
	7.4.2	Ausführungen		
	7.4.3	Durchbrüche		
	7.5	Trassenplanung		
		Platzbedarf bei horizontaler Installation		
	7.5.1			
	7.5.2	Platzbedarf bei vertikaler Installation		
	7.5.3	Befestigungsbügel für vertikale Befestigung		
	7.5.4	Befestigungsbügel für horizontale Befestigung		
	7.5.5	Tragekonstruktionen		
	7.6	Magnetische Felder	301	

7.7	Sprinklerprüfung	305
7.8	Tools und Dienstleistungen	307
7.8.1	Engineering Tools - SIMARIS design	307
7.8.2	Engineering Tools - SIMARIS project	308
7.8.3	Engineering Tools - SIMARIS curves	309
7.8.4	Engineering Tools - Weitere Informationen zu SIMARIS	310
Glossar.		311
Index		315

Systemübersicht

1.1 Übersicht Siemens Schienenverteiler

- ① System BD01
- 4 System LI
- ② System BD2
- System LR
- 3 System LD
- 6 Kommunikationsfähige Schienenverteiler für die Anbindung an folgende Schienenverteiler: KNX (EIB / Instabus), AS-Interface, PROFIBUS, PROFINET, Modbus

Bild 1-1 Schienenverteiler-Systeme, Übersicht

1.1 Übersicht Siemens Schienenverteiler

Bei Siemens erhalten Sie folgende Schienenverteiler-Systeme:

Bis 160 A

System BD01

- Flexible Energieversorgung
- Variable Richtungsänderung
- · Einfach und schnell zu planen
- Zeit sparende Montage
- Zuverlässige mechanische und elektrische Verbindungstechnik
- Hohe Stabilität, geringes Gewicht
- Zwangsläufiges Öffnen und Schließen der Abgangsstelle
- Vielseitige Abgangskästen
- Geringe Anzahl von Grundbausteinen
- Lagerfreundliches System
- Hohe Schutzart IP54 bei seitlichen und nach unten gerichteten Abgangsstellen für extreme Umgebungsbedingungen, mit Zusatzausrüstung IP55.

Weitere Informationen finden Sie im Kapitel "System BD01 (Seite 15)" und im Katalog LV 70.

Vernetzte Schienenverteiler

- Vernetzbare Funktionserweiterungen für Kombination mit bekannten Abgangskästen
- Anwendungen:
 - Großflächige Beleuchtungssteuerung
 - Fernschalten und Melden im industriellen Bereich
 - Verbrauchserfassung von dezentralen Energieabgängen
- Bussysteme KNX, AS-i, PROFIBUS, PROFINET, Modbus
- Einfach und schnell zu planen
- Flexibel bei Erweiterung und Änderung
- Modulsystem
- Nachrüstbar in bestehenden Installationen
- Einsetzbar mit den Systemen BD01, BD2, LD, LI

Weitere Informationen finden Sie im Kapitel "Vernetzte Schienenverteiler für Industrie und Gebäude (Seite 18)" und im Katalog LV 70.

Bis 1250 A

System BD2

- Einfach und schnell zu planen
- · Zeit sparende und wirtschaftliche Montage
- Zuverlässig und sicher im Betrieb
- Flexibles Bausteinsystem mit einfachen Lösungen für jeden Anwendungsfall
- Frühe Planung der Energieverteilung ohne genaue Kenntnis der Verbraucherstandorte möglich
- Rasche Betriebsbereitschaft durch schnelle und einfache Montage
- Hohe Schutzart IP54 bzw. IP55 für den Einsatz in der rauen Industriewelt
- Innovative Konstruktion: Ausgleichskästen für die Dehnungskompensation entfallen.

Weitere Informationen finden Sie im Kapitel "Planen mit BD2 (Seite 35)" und im Katalog LV 70.

Bis 5000 A

System LD

Das Schienenverteiler-System für die optimale Energieverteilung in der Industrie:

- Zuverlässig und sicher im Betrieb
- Schnelle und einfache Montage
- Platz sparende kompakte Bauform bis 5000 A in einem Gehäuse
- Verbraucherabgänge bis 1250 A
- Schutzart IP34 luftventiliert (IP54 mit geschlossenem Gehäuse)
- Bauartgeprüfte Anbindung an Verteiler und Transformatoren

Für weitere Informationen: "Planen mit LD (Seite 105)"

Bis 6300 A

System LI

Das Schienenverteiler-System für Energietransport und -verteilung in Gebäuden

- Zuverlässig und sicher im Betrieb
- Schnelle und einfache Montage
- Sandwich-Bauweise bis 6300 A
- Verbraucherabgänge bis 1250 A
- Hohe Schutzart IP55 für den Einsatz in der rauen Industriewelt
- Bauartgeprüfte Anbindung an Verteiler und Transformatoren

Für weitere Informationen: "Planen mit LI (Seite 159)"

1.1 Übersicht Siemens Schienenverteiler

System LR

Das Schienenverteiler-System für den Energietransport bei extremen Umgebungsbedingungen (IP68).

- · Zuverlässig und sicher im Betrieb
- Schnelle und einfache Montage
- Gießharzsystem bis 6300 A
- Sichere Anbindung an Verteiler und Transformatoren
- Hohe Schutzart IP68 für Außenanwendungen

Für weitere Informationen: "Planen mit LR (Seite 235)"

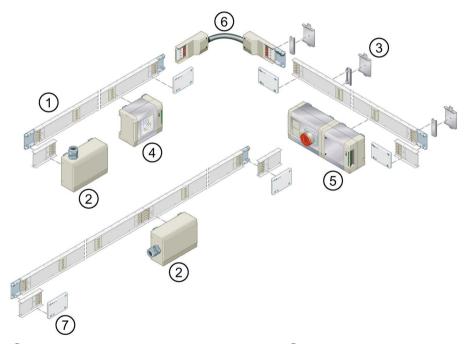
Dimensionierungssoftware SIMARIS design

Mit SIMARIS design dimensionieren Sie einfach, schnell und sicher die elektrische Energieverteilung.

SIMARIS sketch - 3-D-Strangführungspläne für eine effiziente Planung

Strangführungspläne für die Schienenverteiler-Systeme BD01, BD2, LD sowie für das neue Hochstromsystem LI erstellen Sie intuitiv in kurzer Zeit mit SIMARIS sketch.

Weitere Informationen erhalten Sie unter: SIMARIS (http://www.siemens.de/simaris)


1.2 System BD01

Systemübersicht

Das Schienenverteiler-System BD01 ist ausgelegt für Anwendungen von 40 A bis 160 A.

Im System BD01 stehen 5 Bemessungsstromstärken bei nur einer Baugröße zur Verfügung, d. h., alle weiteren Komponenten können leistungsübergreifend für alle 5 Bemessungsströme genutzt werden.

		BD01
Bemessungsstrom		40 A, 63 A, 100 A, 125 A, 160 A
Bemessungsbetriebsspannung	AC	400 V
Schutzart		IP54, IP55
Abstand der Abgangsstellen		Je 0,5 m einseitig Je 1 m einseitig
Bemessungsstrom der Verbraucherabgänge		Bis 63 A

- 1 Schienenkasten
- ② Einspeisekasten
- 3 Befestigungsbügel
- 4 Abgangskasten
- Bild 1-2 Systemübersicht System BD01
- ⑤ Gerätekasten
- 6 Richtungsänderung
- 7 Endflansch

1.2 System BD01

Verbindungstechnik

Der Zusammenbau der Schienenkästen, auch mit Endflanschen und Einspeisekästen, erfolgt einfach und zwangsläufig sicher. Schienenkasten oder Endflansch werden in die Unterschale des Klemmblocks eingelegt. Nach Auflegen der Klemmblockoberseite oder des Einspeisekastens wird durch einfaches Andrehen der 4 Verschluss-Schrauben die sichere Verbindung hergestellt.

Bild 1-3 Herstellen einer sicheren Verbindung

Abgangskästen

Zum Anschließen der Verbraucher stehen je nach Anforderung Abgangskästen in 4 Baugrößen und mit unterschiedlicher Bestückung (z. B. Steckdosen, Sicherungen, Leitungsschutzschalter oder Kombinationen) zur Verfügung.

Bild 1-4 Abgangskasten System BD01

Gerätekästen bieten zusätzlichen Platz für dezentrale Funktionserweiterungen. Somit lassen sich direkt auf der Schiene Automatisierungs- und Steuerungskomponenten usw. unterbringen.

Befestigung und Montage

Die BD01-Schiene wird hochkant, mit den Abgangsstellen seitlich, mittels Befestigungsbügel an der Wand, Decke oder abgehängt montiert. Die Montage erfolgt an den Verbindungsstellen mit einem Universalbefestigungsbügel. Das System kann auch flach, mit den Abgangsstellen nach unten, geführt werden. Dabei reduziert sich der erforderliche Befestigungsabstand auf die Hälfte.

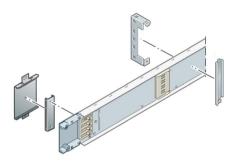


Bild 1-5 Befestigung des Systems BD01

Brandschutz

Wenn das Schienenverteilersystem durch eine Brandwand oder -decke geführt wird, muss es mit einem Brandschutz versehen werden. Entsprechend der bauseitigen Auflagen bietet Siemens die Feuerwiderstandsklasse S90 an.

(EI90 in Vorbereitung)

Ausstattung ab Werk:

Äußerer Brandschutz als Kit für bauseitige Montage.

Mineralischer Mörtel oder Brandschutzmasse zum Verschließen der Fugen zwischen Schienenverteilerelement und Bauteil sind bauseitig beizustellen.

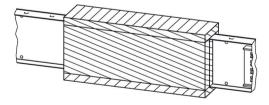


Bild 1-6 Brandschutz BD01-S90

Die Zulassungspapiere für Deutschland können separat bestellt werden:

 Zulassungskit BD01-S90-ZUL-D (Zulassungsbescheid, Wandschilder und Übereinstimmungsbestätigung)

1.3 Vernetzte Schienenverteiler für Industrie und Gebäude

Vorteile von Schienenverteiler-Systemen

Der Schienenverteiler hat seine Stärken im Transportieren, Verteilen, Schalten und Schützen von elektrischer Energie.

Die Integration der Automatisierungs- und Gebäudesystemtechnik in die Siemens Schienenverteiler-Systeme ergibt weitere Pluspunkte. Dabei wird zudem die Flexibilität des Schienenverteilers erhöht.

Durch die Kombination von Standard-Abgangskästen mit Standard-Gerätekästen wird besondere Effizienz bei Planung, Installation und im Betrieb gewährleistet.

Vorteile der Systemlösung bei der Planung

- Modulares System
- Geprüfte Standardkomponenten
- Freiheit bei der Wahl des Bussystems
- Verwendung gängiger Bussysteme

Vorteile der Systemlösung während der Inbetriebnahme

- Einfache und schnelle Montage
- Schrittweise Inbetriebnahme möglich
- Flexibel bei Änderungen und Erweiterungen

Vorteile der Systemlösung im Betrieb

- Transparenz bei den Schaltzuständen
- Zentrale Erfassung der Energiekosten
- Erhöhung der Anlagenverfügbarkeit durch die sofortige Erkennung von Fehlerort und Fehlerart
- Präventive Wartung durch Erfassung von Betriebsstunden und Schaltspielen

Planungsgrundlagen

2.1 Aufbau des Planungshandbuchs

Die Entwicklung eines Energieverteilungskonzepts mit Auslegung der Systeme und Anlagenteile ist sehr komplex, da die Anforderungen der Endanwender mit den technischen Möglichkeiten der Hersteller abgestimmt werden müssen. Dieses Planungshandbuch unterstützt Sie bei dieser Arbeit für folgende Schienenverteiler-Systeme von 160 A bis 6300 A:

- BD2
- LD
- LI
- LR

Beschreibung der einzelnen Systeme

In eigenen Kapiteln werden die einzelnen Systeme mit ihren technischen Merkmalen und Anwendungsgebieten beschrieben. Die grafische Darstellung der einzelnen Schienenverteilerelemente ist ebenso Bestandteil. Alle für die Planungsarbeit wichtigen Details werden besonders hervorgehoben und erläutert.

Weiterführende Informationen

Unter "Weiterführende Informationen" finden Sie Ansätze für eine ausführungsreife Planungslösung. So werden im Einzelnen Dimensionierungsgrundlagen vorgestellt und detaillierte Informationen zu Themengebieten wie Brandschottung oder Funktionserhalt gegeben.

Zur Vereinfachung der Ausarbeitung von Leistungsverzeichnissen bietet Siemens Dienstleistungen und Engineering-Tools an. Eine Übersicht sowie die Erläuterung der Funktionen und Leistungsmerkmale finden Sie unter "Tools und Dienstleistungen (Seite 307)".

2.2 Schienenverteilerplanung

2.2.1 Grundlagen der Schienenverteilerplanung

Entscheidungsfaktoren bei der Erstellung des Energiekonzepts

Wenn Sie das Planungskonzept einer Energieversorgung entwickeln, müssen Sie nicht nur die gültigen Normen und Bestimmungen beachten, sondern auch wirtschaftliche und technische Zusammenhänge klären und erörtern. Dabei müssen Sie die elektrischen Betriebsmittel, z. B. Verteiler und Transformatoren, so bemessen und auswählen, dass sie nicht als einzelnes Betriebsmittel, sondern insgesamt ein Optimum darstellen.

Alle Komponenten müssen für die Belastungen sowohl im Nennbetrieb als auch für den Störfall ausreichend dimensioniert werden. Bei der Erstellung des Energiekonzepts müssen Sie außerdem folgende wichtige Punkte berücksichtigen:

- Art, Nutzung und Form der Gebäude (z. B. Hochhaus, Flachbau oder Geschosszahl)
- Ermitteln von Lastschwerpunkten, Feststellen von möglichen Versorgungstrassen und Standorten für Transformatoren und Hauptverteiler
- Feststellung der gebäudebezogenen Anschlusswerte nach spezifischen Flächenbelastungen entsprechend der Gebäudenutzung
- Bestimmungen und Auflagen der Baubehörden
- Auflagen des Versorgungsnetzbetreibers.

Anforderungen an Energiekonzepte

Als Ergebnis der Planung werden Sie nie eine einzige Lösung erhalten. Vielmehr müssen Sie mehrere Varianten hinsichtlich der technischen und wirtschaftlichen Auswirkungen beurteilen. Dabei stehen folgende Forderungen im Vordergrund:

- Einfache und überschaubare Planung
- Hohe Lebensdauer
- Hohe Verfügbarkeit
- Geringe Brandlast
- Flexible Anpassung an Änderungen im Gebäude.

Die Lösung: Schienenverteiler-Systeme von Siemens

Diese Forderungen lassen sich in den meisten Anwendungen durch den Einsatz geeigneter Schienenverteiler leicht und einfach erfüllen.

Daher werden immer häufiger Schienenverteiler anstatt Kabelinstallationen von planenden Ingenieurbüros zum Energietransport und zur Energieverteilung eingesetzt. Siemens bietet Schienenverteiler von 40 bis 6300 A:

- Das Schienensystem BD01 von 40 bis 160 A für die Versorgung von Werkstätten mit Abgängen bis 63 A
- Das System BD2 von 160 bis 1250 A zur Versorgung von mittelgroßen Verbrauchern in Gebäuden und der Industrie
- Das ventilierte System LD zur Versorgung von Verbrauchern mit mittlerem Energieverbrauch in der Industrie
- Das Sandwichsystem LI zur Energieverteilung von hohen Energiemengen in Gebäuden
- Das vergossene System LR zum Energietransport bei extremen Umgebungsbedingungen (IP68).

Bild 2-1 Schienenverteiler von Siemens

2.2.2 Aufgaben und Ausführungen von Schienenverteilern

Ansprüche an die Energieversorgung

In modernen, insbesondere automatisierten Produktionsstätten und in der modernen Gebäudetechnik werden besondere Ansprüche an die Energieversorgung und ihre Einzelkomponenten gestellt.

Die Möglichkeit der Nach- und Umrüstung ohne die laufende Produktion zu unterbrechen ist nicht nur wichtig für die kontinuierliche Bereitstellung der elektrischen Energie, sondern auch unabdingbare Voraussetzung für Produktionsstätten mit Mehrschichtbetrieb.

Hoher Sicherheitsgrad und komplexe Anlagen erfordern ein Energieverteilersystem, das alle wirtschaftlichen und technischen Anforderungen abdeckt.

Die Schienenverteiler BD01, BD2, LD, LI und LR sind bauartgeprüfte Niederspannungs-Schaltgerätekombination nach IEC / EN 61439-1 und -6.

Die Systeme BD01, BD2 und LD setzen sich aus Stromschienen, Stromschienenträgern, äußerem Gehäuse sowie Befestigungs- und Verbindungselementen zusammen. Das Sandwichsystem LI und das vergossene System LR bestehen aus Stromschienen, Befestigungs- und Verbindungselementen, einer Isolierstoff-Folie sowie einem Aluminiumgehäuse (LI) oder einem Gehäuse aus Epoxidharz (LR).

Bild 2-2 BD2 Schienenkasten mit Abgangskasten

Energietransport

Bei der Verbindung von Transformator und Niederspannungs-Schaltanlage bzw. vom Hauptverteiler zum Unterverteiler übernehmen entsprechende Komponenten des Schienenverteilersystems den Energietransport. Für den Energietransport werden Schienenkästen ohne Abgangsstellen eingesetzt. Neben den Standardlängen kann der Anwender beliebige Längen auswählen, um den baulichen Gegebenheiten gerecht zu werden.

Energieverteilung

Die Energieverteilung ist der Haupteinsatzbereich der Schienenverteiler. Strom kann nicht nur an ein für alle Mal festgelegten Stellen, wie bei der Kabelinstallation, entnommen werden. Stromabgänge können vielmehr in der gesamten mit Energie zu versorgenden Anlage beliebig variiert werden. Um Energie abzunehmen, genügt es, einen Abgangskasten an der Abgangsstelle auf die Schiene zu stecken.

Es entsteht eine variable Verteileranlage für eine linien- und / oder flächendeckende, dezentrale Energieversorgung. Die Abgangsstellen sind beidseitig oder einseitig an den geraden Schienenkästen angebracht.

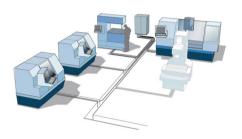
Zur Energieentnahme und zum Anschluss der Verbraucher gibt es beim Schienenverteilersystem je nach Ausführung und Anforderung Abgangskästen bis zu einem Bemessungsstrom von 1250 A aus einer Abgangsstelle. Bestückt wird der Abgangskasten wahlweise mit Sicherungen, Sicherungslastschaltern, Leitungsschutzschaltern oder Leistungsschaltern.

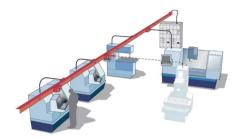
Um die Abgangskästen ohne Freischaltung des Schienenstrangs verändern zu können, gelten folgende **Anforderungen**:

- Der PE-Kontakt des Abgangskastens eilt bei der Montage vor und bei der Demontage nach.
- Die Teile, die während Montage-, Demontage- oder Anschlussarbeiten unter Spannung stehen, sind vollständig gegen direktes Berühren (Schutzart IP2x) geschützt.
- Die Montage ist nur in der korrekten Phasenlage möglich.
- Für Montage und Demontage ist die Lastfreiheit des Abgangskastens sicherzustellen.

Bild 2-3 Abgangskästen für die flexible Stromabnahme

2.2.3 Vergleich von Schienenverteilern und Kabelinstallation


Vergleich der Merkmale


Merkmal	Stromschienenverteiler	Kabelinstallation
Bauartgeprüfte Anlage	х	_
Mechanische Sicherheit	Hoch	Gering
Brandlast	Gering	Hoch
Temperaturverhalten	Umgebungstemperatur gemäß, IEC / EN 61439-1 und -6 max. +40 °C und +35 °C im 24-h-Mittel	Kabelbelastungen sind gemäß DIN 57298-4, Kap. 5.3.3.1 / DIN VDE 0298-4/2.88 auf +30 °C bezogen.
Netzaufbau	Übersichtlich, da linienförmiger Netzaufbau mit seriell angeordneten Verbraucherabgängen über Abgangskästen	Sehr große Kabelhäufung am Einspeise- punkt, da sternförmige Versorgung der Ver- braucher von zentraler Energieverteilung
Schutzorgane für Verbraucher	Im Abgangskasten: dadurch direkte, so- fort nachvollziehbare Zuordnung zum Verbraucher vor Ort	Zentral im Verteiler: Dadurch ist die Zuord- nung zum Verbraucher nicht unmittelbar nachprüfbar. Man muss sich auf die Richtig- keit der Beschriftung von Kabel und Verbrau- cher verlassen.
Platzbedarf	Gering	Hoch, da entsprechend große Verteilungen notwendig sind. Verlegungskriterien (Häu- fung, Verlegungsart, Strombelastbarkeit etc.) müssen beachtet werden
Nachrüstbarkeit bei Verände- rung der Verbraucherabgänge	Große Flexibilität durch Abgangsstellen in den Schienenkästen und große Anzahl von verschiedenen Abgangskästen	Nur mit hohem Aufwand möglich. Verlegung von zusätzlichen Kabeln von zentraler Verteilung zum Verbraucher.
Planung und Projektierung	Einfach und schnell unter Einbeziehung von EDV-gestützten Planungstools	Hoher Projektierungsaufwand (Verteilungs- und Kabelauslegungen, Kabelpläne etc.)
Dimensionierung (Strom, Spannungsfall, Nullungsbedingungen)	Geringer Aufwand	Hoher Aufwand
Aufwand bei Fehlersuche	Gering	Hoch
Brandschottung	Bauartgeprüft, fabrikfertig	Abhängig von der Ausführungsqualität auf der Baustelle
Funktionserhalt	Geprüfter Funktionserhalt nach DIN 4102-12	Abhängig von der Ausführungsqualität auf der Baustelle
Elektromagnetische Beeinflus- sung	Gering	Bei Standardkabel relativ hoch
Montage	Wenig Montagematerial und Hilfsmittel, geringe Montagezeiten	Aufwändiges Montagematerial und umfang- reiche Hilfsmittel, hohe Montagezeiten
Gewicht	Gewicht bis zu 1/3 des vergleichbaren Kabelgewichts	Bis zum 3-fachen des Schienenverteilergewichts
Halogenfreiheit, PVC-Freiheit ¹⁾	Schienenkästen sind grundsätzlich halogen- und PVC-frei.	Standardkabel sind nicht halogen- und PVC-frei.

¹⁾ Details sind vom Hersteller anzufragen

Einfacher in der Planung

Einfach planen, schnell montieren und flexibel einsetzen: Siemens Schienenverteiler-Systeme bringen Energie wirtschaftlich in jedes Gebäude. Mit Gesamtanschlussleistung, Art und Anzahl der Verbraucher lässt sich die Energieverteilung präzise planen. Dabei helfen Planungstools wie SIMARIS design. Der linienförmige Netzaufbau mit regelmäßig angeordneten Verbraucherabgängen sorgt für Übersichtlichkeit. Mit standardisierten Baugrößen lassen sich alle Anwendungen schnell und Platz sparend realisieren.

Bei der Kabelinstallation werden neue Verbraucher über eine zusätzliche Unterverteilung unter erhöhtem Kosten- und Zeitaufwand Ort. angeschlossen.

Verbrauchernahe Abgangskästen beim Schienenverteiler schaffen Transparenz vor drott.

Sicherer durch hohe Kurzschlussfestigkeit und minimale Brandlast

Vorsprung in puncto Sicherheit – sowohl bei der Kurzschlussfestigkeit als auch bei der Brandlast. So haben z. B. die Schienenverteiler-Systeme BD2A 250 eine Brandlast von nur 1,32 kWh/m, vergleichbare Kabel (NYY 4 x 95 / 50 mm²) dagegen 5,19 kWh/m. Zudem sind die Schienen halogenfrei. Siemens Schienenverteiler-Systeme haben eine hohe Kurzschlussfestigkeit. Und der verbrauchernahe Schutz gegen Kurzschluss erleichtert zudem die Fehlersuche.

Niedrige Brandlast beim Schienenverteiler

2.2.4 Leitfaden zur Planung

Dokumentationshilfsmittel

Das Planungshandbuch "Planen mit SIVACON 8PS" beinhaltet allgemeine Grundlagen und produktspezifische Details zur Planung und Dimensionierung der Energieverteilung mit Schienenverteiler SIVACON 8PS.

Für die komplette Planung sämtlicher Hauptkomponenten von der Mittelspannung über Transformatoren bis zur Steckdose für Zweck- und Industriebauten ist die Verwendung des Applikationsbuches von TIP zu empfehlen.

Vorplanung

Einspeiseleistungen	Bemessungsströme und Kurzschluss-Ströme von Normtransformatoren (Seite 28)
Anschlusswerte	Technische Daten der Systeme (Seite 29)
Gleichzeitigkeitsfaktor	Planungsbeispiel (Seite 278)
Zulässiger Spannungsfall	Ermittlung des Spannungsfalls (Seite 267)
Erforderliche Schutzmaßnahmen	Schutzarten für Schienenverteiler (Seite 272)
Verteilungssysteme (Netzformen)	Verteilungssysteme (Seite 275)
Auswahl des Versorgungskonzepts:	
zentral Kabelinstallation	Vergleich von Schienenverteilern und Kabelinstallation (Seite 24)
dezentral Schieneninstallation	Vergleich von Schienenverteilern und Kabelinstallation (Seite 24)

Entwurfsplanung

Anlagendimensionierung

Kurzschlussfestigkeit	Technische Daten der Systeme (Seite 29)
Bemessungsbetriebsströme	Technische Daten der Systeme (Seite 29)
Berechnung Spannungsfall	Ermittlung des Spannungsfalls (Seite 267)
Überlast- und Kurzschluss-Schutz	Überlast- und Kurzschluss-Schutz (Seite 271)
Schutzart entsprechend der Raumarten nach DIN VDE 0100	Schutzarten für Schienenverteiler (Seite 272)

Betrachtung der Schienenführung

	BD2	LD	LI	LR
Schienenkästen	Gerade Schienen- kästen (Seite 41)	Gerade Schienen- kästen (Seite 112)	Gerade Schienen- kästen (Seite 169)	Gerade Schienen- kästen (Seite 242)
Richtungsänderungen	Richtungsänderungen (Seite 42)	Richtungsänderungen (Seite 115)	Richtungsänderungen (Seite 172)	Richtungsänderungen (Seite 243)
Abgangskästen	Abgangskästen (Seite 50)	Abgangskästen (Seite 122)	Abgangskästen (Seite 187)	_
Brandschottungsmaßnahmen Brandschottung (Seite 285)			•	
Zusatzausrüstung	Zusatzausrüstung (Seite 60)	Zusatzausrüstung (Seite 127)	Zusatzausrüstung (Seite 195)	Zusatzausrüstung (Seite 250)

Montage

Allgemeine Montagehinweise	Montageanleitungen für Schienenkästen, Einspeisungen, Abgangskästen und Zubehör
	Zusätzlich für
	BD2: Installationshandbuch System BD2 (Bestell-Nr. A5E02126895)
	LD: Installationshandbuch System LD (Bestell-Nr. A5E02321020)
	LI: Installationshandbuch System LI (in Vorbereitung)
	LR: Installationshandbuch System LR (Bestell-Nr. A5E00949791)

Leistungsverzeichnis-Erstellung

Ausschreibungstexte BD2	Vorbemerkung für Leistungsverzeichnisse (Seite 36)
Ausschreibungstexte LD	Vorbemerkung für Leistungsverzeichnisse (Seite 106)
Ausschreibungstexte LI	Vorbemerkung für Leistungsverzeichnisse (Seite 160)
Ausschreibungstexte LR	Vorbemerkung für Leistungsverzeichnisse (Seite 236)

Aktuelle Ausschreibungstextmodule für SIVACON 8PS finden Sie auch im Internet:

Ausschreibungstexte (http://www.siemens.de/ausschreibungstexte)

2.3 Bemessungsströme und Kurzschluss-Ströme von Normtransformatoren

Bemessungs- spannung <i>U</i> rT	400 / 230	V, 50 Hz		525 V, 50 Hz		690 / 400) V, 50 Hz		
Bemessungswert der Kurzschluss- Spannung <i>U</i> _{kr}		4 %1)	6 % ²⁾		4 %¹)	6 % ²⁾		4 % ¹⁾	6 % ²⁾
Bemessungs- leistung	Bemes- sungs- strom <i>k</i>	Anfangs schluss strom /	wechsel-	Bemes- sungs- strom / _r	•	kurzschluss- strom /'k³)	Bemes- sungs- strom <i>k</i>	Anfangsk wechsels	kurzschluss- ktrom l'(k ³⁾
[kVA]	[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]
50	72	1933	1306	55	1473	995	42	1116	754
100	144	3871	2612	110	2950	1990	84	2235	1508
160	230	6209	4192	176	4731	3194	133	3585	2420
200	288	7749	5239	220	5904	3992	167	4474	3025
250	360	9716	6552	275	7402	4992	209	5609	3783
315	455	12247	8259	346	9331	6292	262	7071	4768
400	578	15506	10492	440	11814	7994	335	8953	6058
500	722	19438	12020	550	14810	9158	418	11223	6939
630	910	24503	16193	693	18669	12338	525	14147	9349
800	1154		20992	880		15994	670		12120
1000	1444		26224	1100		19980	836		15140
1250	1805		32791	1375		24984	1046		18932
1600	2310		39818	1760		30338	1330		22989
2000	2887		52511	2200		40008	1674		30317
2500	3608		65547	2749		49941	2090		37844
3150	4550		82656	3470		62976	2640		47722

 $^{^{1)}}$ U_{kr} = 4 %, genormt nach DIN EN 60909-0 / DIN VDE 0102 Teil 0 für S_{rT} = 50 ... 630 kVA

Näherungsformel

Transformator-Bemessungsstrom	Transformator-Kurzschlusswechselstrom	1
$h_{N}[A] = k \times S_{NT}[kVA]$	$I''_{k} = I_{N} / I_{U_{k}} \times 100 [A]$	400 V: k = 1,45
		690 V: k = 0,84

 $^{^{2)}}$ U_{kr} = 6 %, genormt nach DIN EN 60909-0 / DIN VDE 0102 Teil 0 für S_{rT} = 100 ... 1600 kVA

^{3) //}k Unbeeinflusster Transformator-Anfangskurzschlusswechselstrom beim Anschluss an ein Netz mit unbegrenzter Kurzschlussleistung unter Berücksichtigung des Spannungsfaktors und des Korrekturfaktors der Transformatorimpedanz gemäß DIN EN 60909 / DIN VDE 0102 Teil 0 (Juli 2002)

2.4 Systemauswahlkriterien

2.4.1 Technische Daten der Systeme

Auswahl BD01, BD2, LI, LD und LR

		BD01	BD2	LI	LD	LR
Bemessungs- AC betriebsspannung U_e	V	400	690	1000	1000	1000
Standardschutzart		IP54, IP55	IP52, IP54, IP55	IP55	IP34, IP54 ¹⁾	IP68
Bemessungsstrom InA	A	40 160	160 1250	800 5000, 6300 ²⁾	1100 5000	400 6300
Bemessungskurzzeitstrom- festigkeit /cw (1 s)	kA	0,58 2,5	5,5 34	35 150	55 116	12 100
Bedingte Kurzschlussfestig- keit <i>l</i> _{cf} / <i>l</i> _{cc} für AK bis < 630 A	kA	3)	3)	120 / 100	120 / 100	2)
Bedingte Kurzschlussfestig- keit <i>l</i> _{cc} für AK ab 800 A	kA	_	_	100	100	2)
Leiterkonfigurationen						
L1, N, PE=Gehäuse		_	_	_	_	_
L1, L2, N, PE=Gehäuse		_	_	_	_	_
L1, L2, L3, N, PE=Gehäuse		Х	_	х	_	_
L1, L2, L3, PE=Gehäuse			_	х	_	_
L1, L2, L3, PEN		_	_	X	х	Х
L1, L2, L3, N, PE=Schiene		_	Х	х	х	Х
L1, L2, L3, 2N, PE=Gehäuse		_	_	х	_	_
L1, L2, L3, 2N, PE=Schiene		_	_	х	_	_
L1, L2, L3, N, (PE) ⁴⁾ , PE=Gehäuse		_	_	х	_	_
L1, L2, L3, 2N, (PE) ⁴⁾ , PE=Gehäuse		_	_	х	_	_

2.4 Systemauswahlkriterien

		BD01	BD2	LI	LD	LR
Abmessungen Breite x Höhe)					
für 40 A (Al, Cu)	mm x mm	90 x 25	_	_	_	_
für 160 A (Al, Cu)	mm x mm	90 x 25	167 x 68	_	_	_
für 400 A (AI)	mm x mm	_	167 x 68	_	_	90 x 90
für 1000 A (Al)	mm x mm	_	167 x 126	155 x 132	180 x 180	120 x 120
für 2000 A (AI)	mm x mm	_	_	155 x 230	240 x 180	120 x 220
für 4000 A (AI)	mm x mm	_	_	410 x 230	240 x 180	120 x 440
für 1000 A (Cu)	mm x mm	_	_	155 x 111	180 x 180	90 x 90
für 2000 A (Cu)	mm x mm	_	_	155 x 174	240 x 180	120 x 192
für 3200 A (Cu)	mm x mm	_	_	155 x 280	240 x 180	120 x 240
für 5000 A (Cu)	mm x mm	_	_	410 x 213	240 x 180	120 x 440
für 6300 A (Cu)	mm x mm	_	_	410 x 280	_	120 x 480
Brandlast						
Schienenkasten inkl. Abgangsstellen	kWh/m	0,76	1,32 2	_	_	_
Schienenkasten ohne Abgangsstelle	kWh/m	_	_	2,13 15,54	4,16 8,83	13,01 86,96
pro Abgangsstelle	kWh	_	_	0,89	7,8 10,8	2)
Spannungsfall						
für 40 A (Al, Cu)	mV / m / A	3,192 ⁵⁾	_	_	_	_
für 160 A (Al, Cu)	mV / m / A	0,5535)	0,519 ⁵⁾	_	_	_
für 400 A (AI)	mV / m / A	_	0,544 ⁵⁾	_	_	0,3126)
für 1000 A (AI) ⁶⁾	mV/m/A	_	0,15 ⁵⁾	0,080 ⁵⁾	0,116 ⁶⁾	0,1566)
für 2000 A (AI) ⁶⁾	mV / m/ A	_	_	0,0335)	0,0796)	0,0686)
für 4000 A (AI) ⁶⁾	mV / m/ A	_	_	0,057 ⁵⁾	0,0436)	0,0436)
für 1000 A (Cu) ⁶⁾	mV / m/ A	_	_	0,0805)	_	0,1486)
für 2000 A (Cu) ⁶⁾	mV / m / A	_	_	0,0655)	0,086)	0,0646)
für 3200 A (Cu) ⁶⁾	mV / m / A	_	_	0,0485)	0,0486)7)	0,0496)
für 5000 A (Cu) ⁶⁾	mV / m / A	_	_	0,1085)	0,036)	0,0256)
Magnetische Felder8)						
für 40 A (Al, Cu)	μΤ	0,4	_	_	_	_
für 160 A (Al, Cu)	μΤ	0,6	2,8	_	_	_
für 400 A (AI)	μΤ	_	11,1	_	_	2)
für 1000 A (Al)	μΤ	_	14,6	5,38	11,0	2)
für 2000 A (AI)	μΤ	_		13,32	12,0	2)
für 4000 A (Al)	μΤ			9,12	13,0	2)
für 1000 A (Cu)	μΤ				2)	2)
für 2000 A (Cu)	μΤ			2)	9,7	2)
für 5000 A (Cu)	μT			2)	14,4	2)

		BD01	BD2	LI	LD	LR
Max. Befestigungsabständ	de					
Al-Systeme	m	1,5 3,1	2,5 4,0	2,0 3,0	5,0 6,0	1,5 3,0
Cu-Systeme	m	1,5 3,0	1,5 1,0	2,0 3,0	2,0 3,0	1,5 3,0
Abgänge über Abgangsst	elle auf 3 m ste	ckbar				
bis 16 A	Stück	6	11	_	_	09)
bis 63 A	Stück	6	10	6	3	09)
bis 125 A	Stück	_	10	6	3	09)
von 160 A 250 A	Stück	_	6	6	3	09)
von 315 A 630 A	Stück	_	410)	4	3	09)
von 800 A 1250 A	Stück	_	_	1	2	09)

¹⁾ Bei IP54 muss Stromreduzierung bis 36 % beachtet werden

²⁾ Auf Anfrage

³⁾ Entsprechen in der Regel den eingebauten Schutzorganen (< /cw), siehe deren technische Daten

^{4) (}PE) = zus. isoliert geführter PE-Leiter (Clean Earth)

⁵⁾ Spannungsfallangaben bei 50 Hz 3-phasig, cos phi = 0,9, symmetrischer Belastung, verteilter Lastabnahme und einseitiger Einspeisung

⁶⁾ Spannungsfallangaben bei 50 Hz 3-phasig, cos phi = 0,9, symmetrischer Belastung, konzentrierter Lastabnahme und einseitiger Einspeisung

⁷⁾ Mit LDC6 (I_{nA} = 3400 A)

⁸⁾ Gemessene Magnetfeldwerte bei symmetrischer Belastung im Abstand von 0,5 m zum Schienensystem

⁹⁾ Abgänge nur über Festabgriff am Verbindungsklemmblock realisierbar

¹⁰⁾ Nur ab BD2-630 einsetzbar

2.4.2 Einsatzbereiche der Hochstromsysteme

Auswahl der Hochstromsysteme

Grundsätzlich stehen bei SIVACON 8PS drei Hochstromsysteme zur Verfügung. Wir empfehlen folgende Auswahl abhängig von Einsatzbereich und Umgebungsbedingungen:

Einsatzort	Einsatzbereiche	System			
			LI	LD	LR
Öffentliche Gebäude	BankenVersicherungen	Zur Energieverteilung in mehrstöckigen Gebäuden mit überwiegend vertikalem Strangverlauf	Х		_
	Internet-Provider	Zur Vermeidung der Neutralleiter-Überlastung durch oberschwingungsbehaftete elektronische Verbraucher	X		_
	RechenzentrenRundfunkanstaltenEinkaufszentren	Um auszuschließen, dass Störpotenziale im Schienengehäuse die Funktionsfähigkeit von Verbrauchern negativ beeinflussen.	Х		_
	Möbelhäuser	Bei einer hohen Dichte von Verbraucherabgängen auf kleinstem Raum.	Х	Х	_
	MessenFlughäfen	Zum Schutz von Verbrauchern vor negativen Einflüssen von Magnetfeldemissionen.			_
	KrankenhäuserKliniken	 Systeme bis einschließlich 1600 A Systeme ab 2000 A 	Х	X	
	Bürogebäude	Bei Energieverteilung mit überwiegend horizontalem Strangverlauf und Schutzart IP34	_	Х	_
Industriege- bäude	Industriegebäude Produktionsbereiche	Wenn störlichtbogensichere Verbraucherabgänge erforderlich sind.	_	Х	
	1 Todaktionsbereiche	Wenn die Schutzart IP34 ausreicht.		Х	_
		Wenn die Schutzart IP55 gefordert ist.	Х	_	—
		Wenn die Schutzart IP6x gefordert ist.	_	_	Х
		Zum Energietransport unter extremen Produktionsbedingungen.	_		Х
		Zum Energietransport außerhalb geschlossener Gebäude		-	X

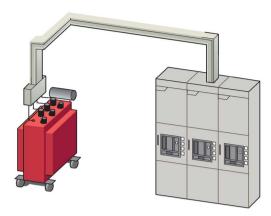
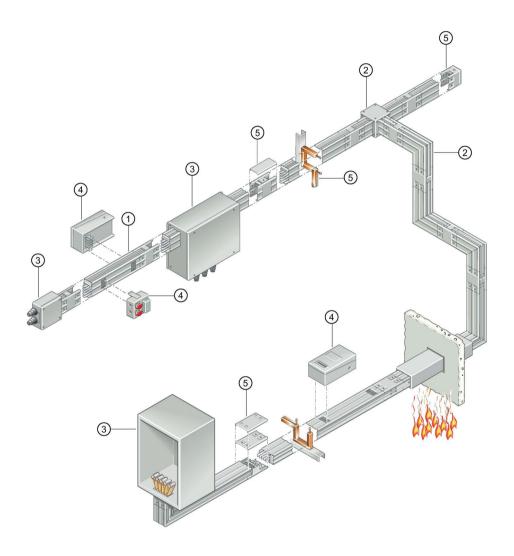


Bild 2-4 Anschluss eines Transformators an einen Siemens-Energieverteiler

Die Tabelle ermöglicht die Auswahl des passenden Schienenverteilersystems abhängig vom Bemessungsstrom des Transformators. Die Kurzschlussfestigkeit der Schienenverteilersysteme LD, LI und LR liegt in der Regel über den Werten für Dauer- und Stoßkurzschluss-Strom des Transformators. Das gilt aber nur bei Einsatz nur eines Transformators für die Niederspannungsversorgung. Bei Ring- oder Maschennetzen oder parallel geschalteten Transformatoren innerhalb einer NSHV können höhere Kurzschlusswerte auftreten. Diese Fälle sind somit gesondert zu betrachten. Die genauen Angaben der Kurzschlussfestigkeit für die Schienenverteilersysteme entnehmen Sie den technischen Daten der jeweiligen Systeme.


Bemes- sungs- leistung	Bemes- sungs- strom /	Anfangs- kurz- schluss- Strom /''k(Uk=6 %)	Stoßkurz- schluss- Strom /pk (Uk = 6 %)	LD- Baugrö- ße	Bemessungsstrom	LI- Baugrö- ße	Bemes- sungs- strom /ha IP54 / IP55	LR- Baugrö- ße	Bemes- sungsstrom ha IP68
[kVA]	[A]	[kAeff]	[kA]		[A]		[A]		[A]
630	910	16,19	38,58	LDA1	1100	LI1000	1000	LRA04 / LRC03	1000
800	1155	19,25	49,00	LDA2	1250	LI1250	1250	LRA06 / LRC04	1400 / 1350
1000	1444	24,06	61,24	LDA3	1600	LI1600	1600	LRA07 / LRC05	1700
1250	1805	30,07	76,57	LDA4	2000	LI2000	2000	LRA08 / LRC07	2000
1600	2310	38,50	98,00	LDA5	2500	LI2500	2500	LRA09 / LRC08	2500
2000	2887	48,11	122,50	LDA6	3000	LI3200	3200	LRA27 / LRC09	3200
2500	3609	60,11	153,10	LDA7	3700	LI4000	4000	LRA28 / LRC27	4000
3150	4546	75,78	192,90	LDC8	5000	LI5000	5000	LRA29 / LRC28	5000

2.4 Systemauswahlkriterien

Weitere Werte finden Sie in den folgenden Kapiteln:

- Für das System BD2: "Technische Daten (Seite 62)"
- Für das System LD: "Technische Daten (Seite 128)"
- Für das System LI: "Technische Daten (Seite 197)"
- Für das System LR: "Technische Daten (Seite 252)"

3.1 Systembeschreibung

- ① Gerade Schienenkästen
- ② Richtungsänderungen
- 3 Einspeisekästen
- 4 Abgangskästen
- S Zusatzausrüstung

Bild 3-1 Übersicht Schienenverteiler BD2

3.2 Systemkomponenten

Der Schienenverteiler BD2 kann universell eingesetzt werden. Er ist nicht nur für die Anwendungsgebiete der flexiblen Stromversorgung und Energieverteilung für Verbraucher in Industrie und Gewerbe konzipiert worden, er ist auch für den Energietransport von einem Versorgungspunkt zu einem anderen einsetzbar. Darüber hinaus wird der Schienenverteiler BD2 als Steigeleitung in Hochhäusern eingesetzt.

3.2 Systemkomponenten

3.2.1 Vorbemerkung für Leistungsverzeichnisse

Die Schienenverteiler BD2 sind als bauartgeprüfte Niederspannungs-Schaltgerätekombination nach IEC / EN 61439-1 und -6 anzubieten.

Das angebotene Fabrikat ist ein Komplettsystem, bestehend aus Systembausteinen, einschließlich Verteileranschlussstücken sowie Winkeln, geraden Längen, Z-Stücken, T-Stücken und flexiblen Richtungsänderungen.

Die Schienenkästen mit Abgangsöffnungen sind mit kodierten Abgangskästen zu bestücken. Die Abgangskästen sind gegen fehlerhafte Montage gesichert. Die Lastfreiheit bei der Demontage eines Abgangskastens ist, je nach Ausführung, durch zwangsweise festgelegte Bedienvorgänge oder durch zu beachtende Hinweise sichergestellt.

Bei Bedarf ist es möglich, den Schienenverteiler mit einer asbestfreien Brandschottung auszurüsten, die bei BD2C der Feuerwiderstandsklasse S120, bei BD2A der Feuerwiderstandsklasse S90 oder S120 entspricht (El90 und El120 in Vorbereitung). Die Stahlblechkapselung des Schienenkastens besteht aus geformten Stahlblechprofilen, damit große Befestigungsabstände erreicht werden. Das Gehäuse ist in der Farbe RAL 7035, lichtgrau lackiert.

Die äußeren Abmessungen dürfen 68 mm x 167 mm bis 400 A bzw. 126 mm x 167 mm bis 1250 A nicht übersteigen. Die Verbindung der einzelnen Systembausteine erfolgt durch eine dem heutigen Stand der Technik entsprechende Schnellverbindungsklemme, in die ein Dehnungsausgleich integriert ist. Es ist nicht möglich, phasenverkehrt zu verbinden. Zwei Schienenverteilerelemente werden mit wenig Aufwand und mit herkömmlichem Werkzeug schnell und sicher mechanisch, elektrisch und wartungsfrei miteinander verbunden.

Das Leitermaterial besteht aus Aluminium oder Kupfer. Die Aluminiumleiter und Kupferleiter müssen über ihre gesamte Länge vernickelt und verzinnt sein. Die Brandlast soll den in den technischen Daten angegebenen Wert nicht überschreiten. Der Dehnungsausgleich muss in jedem Schienenkasten integriert sein. Die Schienenverteiler müssen für horizontale wie auch vertikale Montage geeignet sein. Richtungsänderungen als Kabelverbindungen werden nicht zugelassen. Flexible Richtungsänderungen als Systembaustein des Schienenverteilers sind zulässig.

Folgende Konformitätserklärungen sind dem Angebot beizulegen:

- Qualitätssicherung nach EN ISO 9001
- Zertifikate über
 - Geprüftes Brandschott
 - Geprüften Funktionserhalt

Nach der allgemeinen Vorbemerkung wird nachfolgend entsprechend der technischen Anforderungen das System genau definiert:

Technische Daten Schienenverteiler BD2

	BD2
Bemessungsstrom	1)
Schutzart	IP52 / IP54 / IP55 ²⁾
Einbaulage	horizontal / vertikal ²⁾
Bemessungsisolationsspannung	AC 690 V / DC 800 V
Bemessungsbetriebsspannung	AC 690 V
Bemessungsfrequenz	50 60 Hz
Bemessungsstoßfestigkeit /pk	1)
Bemessungskurzzeitstromfestigkeit /cw (1 s)	1)
Leitermaterial	AI / Cu ²⁾
Anzahl der Leiter (aktiv)	5
Brandlast	1)
Gehäuseabmessungen:	
160 400 A	68 x 167 mm
630 1250 A	126 x 167 mm

Tragen Sie die Daten der gewählten Systemgröße ein. Nähere Informationen finden Sie in den "Technischen Daten".

Hinweis

Durch die innovative Konstruktion des Schienenverteilers BD2 werden keine zusätzlichen Ausgleichskästen für die Dehnungskompensation der Stromschienen benötigt. Die auftretenden Längenausdehnungen, bedingt durch die Stromwärme, werden in der Schnellverbindungsklemme ausgeglichen.

Des Weiteren kann der Schienenverteiler BD2 unabhängig von der Aufbaulage und der Schutzart immer mit 100 % Bemessungsstrom belastet werden. Eine Reduzierung ist nur bei reinem Energietransport in der Aufbaulage hochkant (auf 0,9 x l_e) erforderlich.

²⁾ Nicht Zutreffendes bitte streichen.

3.2.2 Typenschlüssel

Schienenkästen

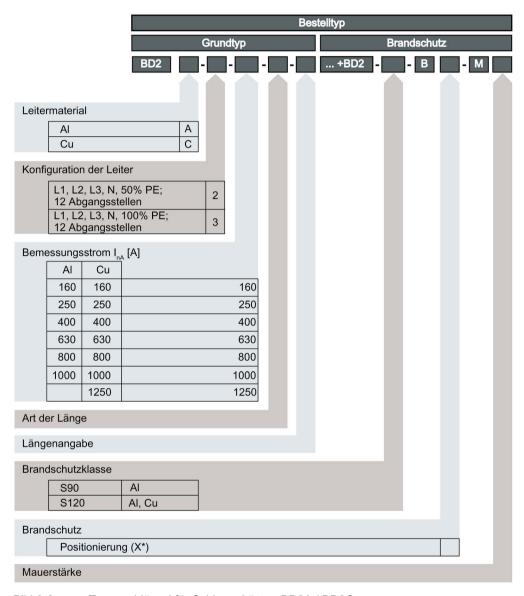
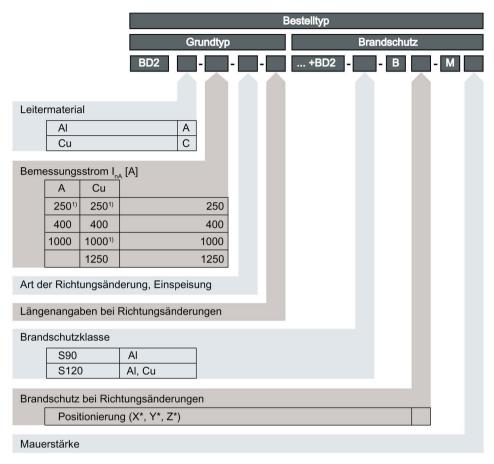
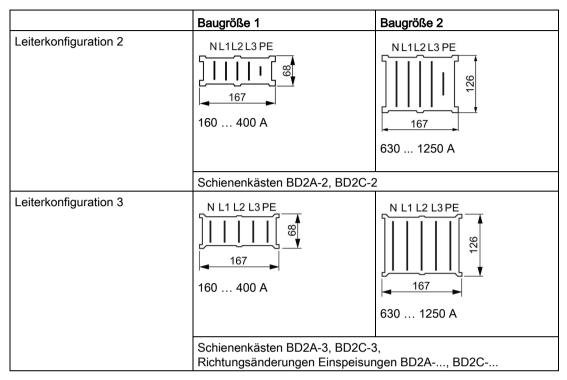



Bild 3-2 Typenschlüssel für Schienenkästen BD2A / BD2C

Einspeisungen, Richtungsänderungen


1) Nur bei Einspeisungen

Auswahlbeispiel für Schienenkästen

In einem Projekt wird ein Bemessungsstrom von 1000 A ermittelt. Als Leitermaterial soll Aluminium verwendet werden. Vorgeschrieben ist ein 5-poliges System. Der Querschnitt des N-Leiters soll gleich dem Außenleiterguerschnitt sein.

Daraus ergibt sich der Typ BD2A-3-1000-

Baugrößen der Schienenkästen (Querschnitte)

Es stehen Zusatzausrüstungen für beide Baugrößen und Leiterkonfigurationen zur Verfügung.

Als Abgänge können Abgangskästen mit Isolierstoffgehäuse bis 25 A und Abgangskästen mit Stahlblechgehäuse für die Baugröße 1 bis 250 A und Baugröße 2 bis 530 A verwendet werden.

3.2.3 Gerade Schienenkästen

Gerade Schienenkästen werden zum Transport elektrischer Energie und zur Versorgung von Verbrauchern eingesetzt.

Gerade Schienenkästen ohne Abgangsstellen für horizontale und vertikale Installation

400 bis 1250 A

Bild 3-3 Gerade Schienenkästen ohne Abgangsstellen

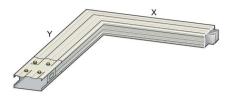
	Länge	Тур	
Standardlängen	1,25 m	BD2SO-1	
	2,25 m	BD2SO-2	
	3,25 m	BD2SO-3	
Wahllängen W	0,50 1,24 m	BD2WO-1W*	
	1,26 2,24 m	BD2WO-2W*	
	2,26 3,24 m	BD2WO-3W*	
Kürzbare Länge	1,25 m	160 400 A	BD2400-WO-AL
		630 1250 A	BD2A-1000-WO-AL
			BD2C-1250-WO-AL

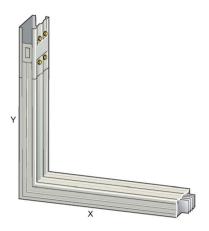
Gerade Schienenkästen mit Abgangsstellen für horizontale und vertikale Installation

160 bis 1250 A

Bild 3-4 Gerade Schienenkästen mit Abgangsstellen

BD22 und BD23	Länge	Тур
Standardlängen mit 12 Abgangsstellen	3,25 m	BD2SB-3
Standardlängen mit 8 Abgangsstellen	2,25 m	BD2SB-2
Standardlängen mit 4 Abgangsstellen	1,25 m	BD2SB-1
Wahllängen mit 8 bis 12 Abgangsstellen	2,26 3,24 m	BD2WB-3W*
Wahllängen mit 4 bis 8 Abgangsstellen	1,26 2,24 m	BD2WB-2W*

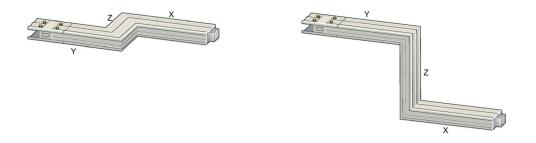

S: Standardlänge; O: Ohne Abgangsstelle; W: Wahllänge; *: Wahllänge in m;


B: Beidseitige Abgangsstellen

3.2.4 Richtungsänderungen

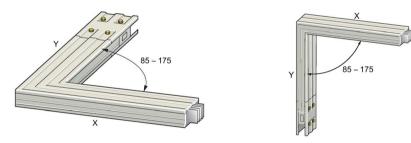
Richtungsänderungen werden zur Anpassung des Strangverlaufs an bauliche Gegebenheiten eingesetzt.

Gewinkelte Schienenkästen



	Länge	Тур	
Standardlänge	X und Y= 0,36 m	160 400 A	BD2400-L
		630 1250 A	BD2A-1000-L
			BD2C-1250-L
Wahllänge	X oder Y =	160 400 A	BD2400-LX*/Y*
0,36 1,25 m	630 1250 A	BD2A-1000-LX*/Y*	
			BD2C-1250-LX*/Y*

^{*} Wahllänge in m


Z-Schienenkästen

	Länge	Тур	
Wahllänge	X oder Y =	160 400 A	BD2400-ZX*/Y*/Z*
0,36 0,6 m Z ≤ 1,25 m	630 1250 A	BD2A-1000-ZX*/Y*/Z*	
	Z ≤ 1,25 m		BD2C-1250-ZX*/Y*/Z*

^{*} Wahllänge in m

Gewinkelte Schienenkästen mit projektierbarem Winkel von 85° bis 175° in 5°-Schritten

	Länge	Тур	
Standardlänge	X und Y = 0.36 m	160 400 A	BD2400-LG*
		630 1250 A	BD2A-1000-LG*
			BD2C-1250-LG*
Wahllänge	X oder Y = 0,36 1,25 m	160 400 A	BD2400-LX*/Y*-G*
		630 1250 A	BD2A-1000-LX*/Y*-G*
			BD2C-1250-LX*/Y*-G*

X*, Y*: Wahllänge in m; G*: erforderliche Gradzahl

3.2 Systemkomponenten

T- und K-Kästen

K-Kasten

Schenkellänge	Typ K-Kästen	
0,36 m	160 400 A	BD2400-T.
	630 1250 A	BD2A-1000-T.
		BD2C-1250-TV(TH)

Schenkellänge	Typ T-Kästen	
0,36 m	160 400 A	BD2400-K
	630 1250 A	BD2A-1000-K
		BD2C-1250-KVH

Bewegliche Schienenkästen flexibel in X/Y/Z-Richtung

Länge	Тур	
1,25 m	160 400 A	BD2-400-R
1,75 m	630 800 A	BD2-800-R
Sonderlängen bis 3,25 m möglich		

3.2.5 Einspeisekästen

Einspeisekästen werden zur Einspeisung des Schienenverteilers mit Einleiter- oder Mehrleiterkabeln sowie direkt zur Einspeisung von Niederspannungsverteilungen angewendet. Die Einspeisung kann als Endeinspeisung oder Mitteneinspeisung erfolgen.

3.2.5.1 Endeinspeisekästen

Gemeinsame Merkmale

Alle Endeinspeisekästen haben folgende gemeinsame Merkmale:

Das Einführen von Kabeln ist von der Stirnseite aus realisierbar. Bei der Ausführung mit Kabelraum ist die Leitungseinführung seitlich möglich. Bei Mehrleitereinführung ist ein teilbarer Einführungsflansch mit Kabeltüllen und Kabelfangschiene, bei Einleitereinführung ist eine Aluminiumplatte Standard. Die Kabel werden mittels Kabelschuh und Bolzen angeschlossen. Die Bolzen sind im Lieferumfang enthalten. Beim Anschluss von 5-Leiter-Kabeln müssen Sie die werkseitig montierte Brücke zwischen PE und N herausnehmen. Die Phasenlage kann vor Ort getauscht werden.

Kabeleinspeisung: Mehrleitereinführung BD2.-...-EE, Einleiterausführung BD2.-...-EE-EBAL

Bild 3-5 Endeinspeisekästen: Kabeleinspeisung

Ausführung	Тур
160 250 A	BD2250-EE(-EBAL)
160 400 A	BD2400-EE(-EBAL)
630 1000 A	BD21000-EE(-EBAL)
630 1250 A	BD2C-1250-EE(-EBAL)

3.2 Systemkomponenten

Kabeleinspeisung: Mehrleitereinspeisung mit Kabelraum BD2.-...-EE-KR, Einleitereinführung mit Kabelraum BD2.-...-EE-KR-EBAL

Bild 3-6 Endeinspeisekästen: Seitliche Kabeleinführung

Ausführung	Тур
160 400 A	BD2400-EE-KR(-EBAL)
630 1000 A	BD21000-EE-KR(-EBAL)
630 1250 A	BD2C-1250-EE-KR(-EBAL)

Kabeleinspeisung mit Lasttrennschalter

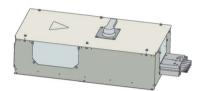


Bild 3-7 Endeinspeisekasten mit Lasttrennschalter

	Ausführung	Тур
250 A	mit 3-pol. Lasttrennschalter	BD2C-250-EESC
315 A	mit 3-pol. Lasttrennschalter	BD2C-315-EESC
400 A	mit 3-pol. Lasttrennschalter	BD2C-400-EESC
630 A	mit 3-pol. Lasttrennschalter	BD2C-630-EESC
800 A	mit 3-pol. Lasttrennschalter	BD2C-800-EESC

Das Einführen von Kabeln ist von drei Seiten möglich.

3.2.5.2 Mitteneinspeisekästen

Gemeinsame Merkmale

Alle Mitteneinspeisekästen haben folgende Merkmale:

Das Einführen von Kabeln ist von drei Seiten möglich. Der teilbare Einführungsflansch mit integrierter Zugentlastung ist auf diese Positionen umsetzbar. Kabeleinführungsplatten aus Aluminium für Einleiterkabel als Alternativausrüstung. Die Kabel werden mittels Kabelschuh und Bolzen angeschlossen. Beim Anschluss von 5-Leiter-Kabeln müssen Sie die werkseitig montierte Brücke zwischen PE und N herausnehmen.

Bild 3-8 Mitteneinspeisung

Ausführung	Тур
160 400 A	BD2400-ME
630 1000 A	BD21000-ME
160 400 A	BD2400-ME-MBAL
630 1000 A	BD21000-ME-MBAL

Wichtig für die Planung:

Um große Leistungen mit kleinen Schienenquerschnitten zu verteilen, kann es sinnvoll sein, eine Mitteneinspeisung zu verwenden. Sie wird in der Mitte eines Strangs zwischen zwei Schienenkästen montiert. Mit einer Kabelzuleitung werden der linke und der rechte Strang gleichzeitig versorgt. Es können somit zum Beispiel bei einer 1000 A-Mitteneinspeisung 2000 A eingespeist werden. Hierbei müssen Sie dem Überlast- und Kurzschluss-Schutz des Schienensystems besondere Aufmerksamkeit widmen.

In folgenden Fällen müssen Sie zusätzliche Schutzmaßnahmen treffen:

- Wenn der Kurzschluss-Schutz nicht durch das vorgeschaltete Schutzorgan sichergestellt ist und/oder
- Wenn die Überlastung nicht durch die Art und Anzahl der Verbraucher gegeben ist.

Es gibt zwei mögliche Schutzmaßnahmen:

- 1. Verwendung einer Mitteneinspeisung mit je einem Kuppelkasten rechts und links neben der Einspeisung. Der Kuppelkasten ist mit einer Schutzeinrichtung (Sicherung oder Leistungsschalter) versehen, die die Kurzschluss- und Überlastfunktion sicherstellt.
- 2. Verwendung von zwei Endeinspeisungen, die mittig im Strangverlauf angeordnet werden. Die zwei Zuleitungen werden in der Verteileranlage separat abgesichert.

3.2 Systemkomponenten

3.2.6 Verteilereinspeisung

Die Verteilereinspeisung ermöglicht den Direktanschluss an eine Niederspannungsverteilung. Kabel oder Kupferband werden mit den mitgelieferten Bolzen angeschlossen.

Bild 3-9 Verteilereinspeisung

Ausführung	Тур
160 250 A	BD2250-VE
160 400 A	BD2400-VE
630 1000 A	BD21000-VE
630 1250 A	BD2C-1250-VE

3.2.7 Kuppelkästen

Merkmale von Kuppelkästen

Kuppelkästen werden eingesetzt, wenn es notwendig ist, Anlagenteile oder Bereiche der Energieversorgung abzuschalten oder entsprechend zuzuschalten. Zur Anpassung des Schienensystems an die tatsächliche Last kann der Querschnitt der Stromschiene reduziert und mit einem Kuppelkasten gegen Kurzschluss und Überlast geschützt werden.

Kuppelkästen können je nach Aufgabe mit Sicherungslasttrennern bis 630 A oder mit Leistungsschaltern bis 1250 A bestückt werden.

Die maximale Einbaulänge im Schienenstrang beträgt 1500 mm. Die Abmessungen des Kuppelkastens betragen maximal 1250 x 500 x 500 mm (B x H x T).

Kuppelkästen mit Leistungsschalter

Bild 3-10 Kuppelkasten mit Leistungsschalter

BD2.-...-K...-3VL...: Auf Anfrage

Kuppelkästen mit Sicherungslasttrennschalter

Bild 3-11 Kuppelkasten mit Sicherungslasttrennschalter

BD2.-...-K...-ST...: Auf Anfrage

3.2.8 Abgangskästen

Abgangskästen werden zur Versorgung von Verbrauchern und Stromabgängen, z. B. zur Einspeisung kleinerer Schienenverteiler, verwendet.

3.2.8.1 Abgangskästen bis 25 A

Besondere Merkmale

- Abgangskästen mit Sicherungen, Leitungsschutzschaltern und Steckdosen
- Isolierstoffkapselung, Farbe lichtgrau, RAL 7035
- Durchsichtige und von außen zu betätigende Abdeckung für die Schutzorgane
- Lastschaltvermögen AC 22 B (400 V) der Abgriffkontakte
- Einführung von Mehrleiterkabeln aus drei Richtungen möglich
- Vorgeprägte Einführungsöffnungen
- Kabeltülle und integrierte Zugentlastung (Standard)
- Öffnen des Kastens zum Anschließen der Kabel ist nur bei abgenommenem Abgangskasten möglich.
- Verdrehschutz verhindert falsches Aufsetzen.
- Anschlussguerschnitte finden Sie im Kapitel "Abgangskästen (Seite 72)".

Bild 3-12 Abgangskasten bis 25 A

/nc	Ue	Ausführung	Тур
[A]	[V]		
25	400	Sicherungssockel 3 x D02	BD2-AK1/S18
16	400	Sicherungssockel 3 x D01	BD2-AK1/S14
16	400	3-pol. Leitungsschutzschalter 16 A, Charakteristik C	BD2-AK1/A163
16	230	Sicherungssockel 2 x D01 und 2 x 3-pol. Steckdosen CEE 16	BD2-AK1/2CEE163S14
16	400	Sicherungssockel 3 x D01 und 1 x 5-pol. Steckdose CEE 16	BD2-AK1/CEE165S14
16	230	2 Leitungsschutzschalter 16 A, 1-pol., Charakteristik B und BD2-AK1/2CEE163 2 Steckdosen CEE 16, 3-pol.	
16	400	3-pol. Leitungsschutzschalter 16 A, Charakteristik C und BD2-AK1/CEE16 1 Steckdose CEE 16, 5-pol.	
16	230	Sicherungssockel 3 x D01 und 3 Schuko-Steckdosen 16 A BD2-AK1/3SD163S1	
16	230	3 Leitungsschutzschalter 16 A, 1-pol., Charakteristik B und 3 Schuko-Steckdosen 16 A 3 Schuko-Steckdosen 16 A	

3.2.8.2 Abgangskästen bis 63 A

Abgangskästen mit 63 A, mit Deckeltrenner

Besondere Merkmale

- Abgangskästen mit Sicherungen, Leitungsschutzschaltern und Steckdosen
- Stahlblechkapselung, feuerverzinkt und Deckel pulverlackiert, Farbe lichtgrau, RAL 7035
- Aufsetzen und Abnehmen des Kastens nur bei geöffnetem Deckel möglich
- Einführung von Mehrleiterkabeln aus drei Richtungen möglich, vorgestanzte Einführungsöffnungen
- Verdrehschutz verhindert falsches Aufsetzen.
- Im Deckel integrierter Lasttrenner, Schaltvermögen AC 22 B (400 V), der die Spannungsund Lastfreiheit bei geöffnetem Deckel sicherstellt
- Anschlussquerschnitte finden Sie im Kapitel "Abgangskästen (Seite 72)".

Bild 3-13 Abgangskästen bis 63 A, mit Deckeltrenner

/nc	U₀	Ausführung	Тур
[A]	[V]		
63	400	3-pol. Sicherungssockel D02 bis 63 A	BD2-AK2X/S18
25	500	3-pol. Sicherungssockel S27 bis 25 A	BD2-AK2X/S27
63	500	3-pol. Sicherungssockel S33 bis 63 A	BD2-AK2X/S33
32	400	3-pol. Leitungsschutzschalter 32 A, Charakteristik C	BD2-AK2M2/A323
32	400	3-pol. Sicherungssockel S33 und 1 x 5-pol. Steckdose CEE 32	BD2-AK2X/CEE325S33
63	400	3-pol. Sicherungssockel S33 und 1 x 5-pol. Steckdose CEE 63	BD2-AK2X/CEE635S33
32	400	3-pol. Leitungsschutzschalter 32 A, Charakteristik C und 1 x 5-pol. Steckdose CEE 32	BD2-AK2M2/CEE325A323
16	400	2 x 3-pol. Sicherungssockel D01 und BD2-AK2X/2CEE165S14 2 x 5-pol. Steckdosen CEE 16	
16	400	2 x 3-pol. Leitungsschutzschalter 16 A, Charakteristik C und BD2-AK2M2/2CEE165A163 2 x 5-pol. Steckdosen CEE 16	
16	230	1 x 3-pol. Leitungsschutzschalter 16 A, Charakteristik C und 2 x 1-pol. Leitungsschutzschalter 16 A, Charakteristik C und 1 x 5-pol. Steckdose CEE 16 und 2 x Schuko-Steckdose 16 A	BD2-AK2M2/2SD163CEE165A163

Abgangskästen bis 63 A, ohne Deckeltrenner

Besondere Merkmale

- Abgangskästen mit Sicherungen oder Leitungsschutzschaltern
- Stahlblechkapselung, feuerverzinkt und Deckel pulverlackiert, Farbe lichtgrau, RAL 7035
- Verdrehschutz verhindert falsches Aufsetzen.
- Aufsetzen und Abnehmen des Kastens bei geöffnetem und geschlossenem Deckel möglich
- Bei geöffnetem Deckel bleibt Spannung an den eingebauten Geräten (Prüfmöglichkeit).
 Dabei ist die Schutzart IP20 / Fingersicherheit gewährleistet.
- Einführung von Mehrleiterkabeln aus drei Richtungen über vorgestanzte Einführungsöffnungen möglich
- Anschlussguerschnitte finden Sie im Kapitel "Abgangskästen (Seite 72)".

Hinweis

Bild 3-14 Abgangskästen bis 63 A, ohne Deckeltrenner

/nc	Ue	Ausführung	Тур
[A]	[V]		
63	400	3-pol. Sicherungssockel D02 bis 63 A	BD2-AK02X/S18
25	500	3-pol. Sicherungssockel S27 bis 25 A	BD2-AK02X/S27
63	500	3-pol. Sicherungssockel S33 bis 63 A	BD2-AK02X/S33
25	400	3-pol. Sicherungsunterteil SP38 für Zylindersicherung 10 x 38 mm	BD2-AK02X/F1038-3
25	400	4-pol. Sicherungsunterteil SP38 für Zylindersicherung 10 x 38 mm	BD2-AK02X/F1038-3N
32	400	3-pol. Sicherungsunterteil SP51 für Zylindersicherung 14 x 51 mm	BD2-AK02X/F1451-3
32	400	4-pol. Sicherungsunterteil SP51 für Zylindersicherung 14 x 51 mm	BD2-AK02X/F1451-3N
63	400	3-pol. Sicherungsunterteil SP58 für Zylindersicherung 22 x 58 mm	BD2-AK02X/F2258-3
63	400	4-pol. Sicherungsunterteil SP58 für Zylindersicherung 22 x 58 mm	BD2-AK02X/F2258-3N
32	400	3-pol. Leitungsschutzschalter 32 A, Charakteristik C	BD2-AK02M2/A323
32	400	3+N-pol. Leitungsschutzschalter 32 A, Charakteristik C	BD2-AK02M2/A323N
63	400	3-pol. Leitungsschutzschalter 63 A, Charakteristik C	BD2-AK02M2/A633
63	400	3+N-pol. Leitungsschutzschalter 63 A, Charakteristik C	BD2-AK02M2/A633N

3.2.8.3 Abgangskästen bis 125 A

Abgangskästen bis 125 A, mit Deckeltrenner

Besondere Merkmale

- Mit Sicherungsunterteil und Sicherungslasttrennschalter
- Stahlblechkapselung, feuerverzinkt und Deckel pulverlackiert, Farbe lichtgrau, RAL 7035
- Verdrehschutz verhindert falsches Aufsetzen.
- Deckelverriegelung bei Sicherungslasttrennschalter
- Einführung von Mehrleiterkabeln aus drei Richtungen über vorgestanzte Einführungsöffnungen möglich
- Anschlussquerschnitte im Kapitel "Abgangskästen (Seite 72)".

Hinweis

Bei Ausführung mit Sicherungsunterteilen müssen Sie vor Abnahme des Gehäusedeckels die Last freischalten.

Bild 3-15 Abgangskästen bis 125 A, mit Deckeltrenner

/nc	U _e	Ausführung	Тур
[A]	[V]		
125	690	3-pol. NH-Sicherungsunterteil Größe 00	BD2-AK3X/GS00
125	690	3-pol. NH-Sicherungslasttrennschalter Größe 00	BD2-AK3X/GSTZ00

Abgangskästen bis 125 A, ohne Deckeltrenner

Besondere Merkmale

- Mit Leitungsschutzschalter, Leistungsschalter, Sicherungslastschalter, Sicherungsunterteil und Sicherungslasttrenner
- Stahlblechkapselung, feuerverzinkt und Deckel pulverlackiert, Farbe lichtgrau, RAL 7035
- Verdrehschutz verhindert falsches Aufsetzen.
- Aufsetzen und Abnehmen des Kastens bei geöffnetem und geschlossenem Deckel möglich
- Bei geöffnetem Deckel bleibt die Spannung an den eingebauten Geräten (Prüfmöglichkeit). Dabei ist die Schutzart IP20 / Fingersicherheit gewährleistet.
- Deckelverriegelung bei Kästen mit Leistungsschalter und Sicherungslasttrennschalter
- Einführung von Mehrleiterkabeln aus drei Richtungen über vorgestanzte Einführungsöffnungen möglich
- Anschlussquerschnitte finden Sie im Kapitel "Abgangskästen (Seite 72)".

Hinweis

Unter Last dürfen die Abgangskästen weder aufgesteckt noch abgenommen werden.

Beachten Sie für den Einsatz der Abgangskästen mit Leistungsschalter bei U_e = 690 V das verminderte Schaltvermögen.

Bild 3-16 Abgangskasten bis 125 A, ohne Deckeltrenner

/nc	U _e	Ausführung	Тур
[A]	[V]		
125	400	mit 3-pol. Leitungsschutzschalter 125 A Charakteristik C	BD2-AK03M2/A1253
125	400	mit 3-N-pol. Leitungsschutzschalter 125 A Charakteristik C	BD2-AK03M2/A1253N
125	400	mit 3-pol. Sicherungslasttrennschalter GSTA00	BD2-AK03X/GSTA00
125	400	mit 3-pol. Sicherungsunterteil SP58	BD2-AK03X/F2258-3
125	400	mit 4-pol. Sicherungsunterteil SP58	BD2-AK03X/F2258-3N
125	400	mit 3-pol. IEC - mit Sicherungslasttrennschalter	BD2-AK03X/FS125IEC-3
125	400	mit 3-pol. BS - mit Sicherungslasttrennschalter	BD2-AK03X/FS125BS-3
125	400	mit 4-pol. IEC - mit Sicherungslasttrennschalter	BD2-AK03X/FS125IEC-4
125	400	mit 4-pol. BS - mit Sicherungslasttrennschalter	BD2-AK03X/FS125BS-4
40	400	mit Leistungsschalter 40 A 3-pol.	BD2-AK03X/LSD-DC40-N
63	400	mit Leistungsschalter 63 A 3-pol.	BD2-AK03X/LSD-DC(AE)63-N
80	400	mit Leistungsschalter 80 A 3-pol.	BD2-AK03X/LSD-DC(AE)80-N
100	400	mit Leistungsschalter 100 A 3-pol.	BD2-AK03X/LSD-DC100-N
125	400	mit Leistungsschalter 125 A 3-pol.	BD2-AK03X/LSD-DC125-N
40	400	mit Leistungsschalter 40 A 4-pol.	BD2-AK03X/LSD-EM40-N
63	400	mit Leistungsschalter 63 A 4-pol.	BD2-AK03X/LSD-EM63-N
80	400	mit Leistungsschalter 80 A 4-pol.	BD2-AK03X/LSD-EM80-N
100	400	mit Leistungsschalter 100 A 4-pol.	BD2-AK03X/LSD-EM100-N
125	400	mit Leistungsschalter 125 A 4-pol.	BD2-AK03X/LSD-EM125-N

3.2.8.4 Abgangskästen bis 250 A

Besondere Merkmale

- Abgangskästen mit Leistungsschalter, Sicherungslasttrennschalter und Sicherungsunterteil
- Stahlblechkapselung, feuerverzinkt und lackiert, Farbe lichtgrau, RAL 7035
- Einführung von Mehr- oder Einleiterkabeln aus 3 Richtungen möglich
- Aufsetzen und Abnehmen des Kastens nur bei geöffnetem Deckel möglich
- Verdrehschutz verhindert falsches Aufsetzen.
- Anschlussquerschnitte finden Sie im Kapitel "Abgangskästen (Seite 72)".

Hinweis

Beachten Sie für den Einsatz der Abgangskästen mit Leistungsschalter bei U_e = 690 V das verminderte Schaltvermögen.

Bild 3-17 Abgangskästen bis 250 A

/nc [A]	<i>U</i> ₀ [V]	Ausführung	Тур
160	400	mit 160 A Leistungsschalter, 3-pol.	BD2-AK04/LSD-DC(AE)-160-N
160	400	mit 160 A Leistungsschalter, 4-pol.	BD2-AK04/LSD-EC-160-N
200	400	mit 200 A Leistungsschalter, 3-pol.	BD2-AK04/LSD-DC(AE)-200-N
200	400	mit 200 A Leistungsschalter, 4-pol.	BD2-AK04/LSD-EC-200-N
250	400	mit Leistungsschalter 250 A, 3-pol.	BD2-AK04/LSD-DC(AE)-250-N
250	400	mit Leistungsschalter 250 A, 4-pol.	BD2-AK04/LSD-EC-250-N
225	400	mit Sicherungslasttrennschalter 250 A, 3-pol.	BD2-AK04/FS250IEC(BS)-3
225	400	mit Sicherungslasttrennschalter 250 A, 4-pol.	BD2-AK04/FS250IEC(BS)-4
250	690	mit Sicherungsunterteil NH1, 3-pol.	BD2-AK04/SNH1

3.2.8.5 Abgangskästen bis 400 A

Abgangskästen bis 400 A, nur für BD2-Systeme 630 bis 1250 A

Besondere Merkmale

- Abgangskästen mit Leistungsschalter, Sicherungslasttrennschalter und Sicherungsunterteil
- Stahlblechkapselung, feuerverzinkt und lackiert, Farbe lichtgrau, RAL 7035
- Einführung von Mehr- oder Einleiterkabeln aus 3 Richtungen möglich
- Aufsetzen und Abnehmen des Kastens nur bei geöffnetem Deckel möglich
- Verdrehschutz verhindert falsches Aufsetzen.
- Anschlussquerschnitte finden Sie im Kapitel "Abgangskästen (Seite 72)".

Hinweis

Beachten Sie für den Einsatz der Abgangskästen mit Leistungsschalter bei U_e = 690 V das verminderte Schaltvermögen.

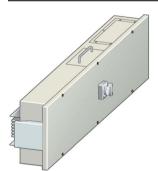


Bild 3-18 Abgangskästen bis 400 A nur für BD2-Systeme 630 bis 1250 A

/nc	U₀	Ausführung	Тур
[A]	[V]		
400	400	mit Leistungsschalter 400 A, 3-pol.	BD2-AK05/LSD-DC(AE)-400-N
400	400	mit Leistungsschalter 400 A, 4-pol.	BD2-AK05/LSD-EC-400-N
320	400	mit Sicherungslasttrennschalter 400 A, 3-pol.	BD2-AK05/FS400IEC(BS)-3
320	400	mit Sicherungslasttrennschalter 400 A, 4-pol.	BD2-AK05/FS400IEC(BS)-4
400	690	mit Sicherungsunterteil NH2, 3-pol.	BD2-AK05/SNH2

3.2.8.6 Abgangskästen bis 530 A

Abgangskästen bis 530 A, nur für BD2-Systeme 630 bis 1250 A

Besondere Merkmale

- Abgangskästen mit Leistungsschalter und Sicherungsunterteil
- Stahlblechkapselung, feuerverzinkt und lackiert,
- Farbe lichtgrau, RAL 7035
- Einführung von Mehr- oder Einleiterkabeln aus 3 Richtungen möglich
- Aufsetzen und Abnehmen des Kastens nur bei geöffnetem Deckel möglich
- Verdrehschutz verhindert falsches Aufsetzen.
- Anschlussquerschnitte im Kapitel "Abgangskästen (Seite 72)".

Hinweis

Beachten Sie für den Einsatz der Abgangskästen mit Leistungsschalter bei U_e = 690 V das verminderte Schaltvermögen.

Bild 3-19 Abgangskästen bis 530 A nur für BD2-Systeme 630 bis 1250 A

/nc	U₀	Ausführung	Тур
[A]	[V]		
530	400	mit Leistungsschalter 630 A, 3-pol.	BD2-AK06/LSD-DC(AE)-630-N
530	400	mit Leistungsschalter 630 A, 4-pol.	BD2-AK06/LSD-EC-630-N
530	690	mit Sicherungsunterteil NH3, 3-pol.	BD2-AK06/SNH3

3.2.9 Gerätekästen

Besondere Merkmale

- Das Gehäuse besteht aus feuerverzinktem Stahlblech, Deckel lackiert, Farbe lichtgrau, RAL 7035.
- Das Einführen von Kabeln ist aus 3 Richtungen über vorgestanzte Einführungsöffnungen möglich (Kabelverschraubungen aus Kunststoff mit Zugentlastung verwenden, nicht im Lieferumfang enthalten).
- Kombinierbar mit Abgangskästen (BD2-AK02, AK2, AK03, AK3)
- Für den Geräteeinbau ist eine Hutschiene integriert.
- 1 Baugröße mit 8 TE (1 TE = 18 mm Platzbedarf).
- Ohne oder mit Geräteeinbaueinheit für Außenbetätigung (1 Baugröße mit Platzeinheiten für 8 TE)
- Einbau von Geräten (z. B. Leitungsschutzschalter) in Anlehnung an DIN 43871 bis einschließlich 63 A möglich

Bild 3-20 Gerätekasten

<i>U</i> _e	Ausführung	Тур
[V]		
400	-	BD2-GK2X/F
400	-	BD2-GKM2/F

3.2 Systemkomponenten

3.2.10 Zusatzausrüstung

3.2.10.1 Zusatzausrüstung für Schutzarterhöhung auf IP54 und IP55

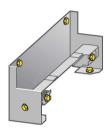
Flansche für Schutzarterhöhung

Der Schienenverteiler BD2 besitzt bei horizontaler und bei vertikaler Einbaulage die Schutzart IP52. Durch den Anbau von Zusatzflanschen wird die Schutzart IP54 oder IP55 erreicht. Details zu den Schutzartflanschen finden Sie im Katalog LV 70.

3.2.10.2 Befestigungsmaterial

Zur Befestigung der Schienenverteiler in Hochkant- und Flachmontage in horizontalen Schienensträngen gibt es folgende Befestigungsbügel:

Befestigungsbügel BD2-400-BB


Befestigungsbügel BD2-1250-BB

Befestigungsmaterial

Bild 3-21 Befestigungsbügel für vertikale Montage BD2-BVF

Zur Befestigung von vertikalen Schienensträngen

Wandbefestigung BD2-BWV

Wandbefestigung BD2-BVC

Bild 3-22 Deckenbefestigung BD2-BDV

Ausgleich von Wand- oder Deckenunebenheiten von 30 bis 82 mm

Bild 3-23 Distanzbügel BD2-BD

Der Distanzbügel wird mit dem Befestigungsbügel BD2-400(1250)-BB kombiniert.

3.3 Technische Daten

3.3.1 BD2 allgemein

			BD2
Normen und Bestimmungen			IEC / EN 61439-1 und -6
Bemessungsisolationsspannung U_i	AC / DC	٧	690 / 800
Überspannungskategorie / Verschmutzungsgrad			III/3
Bemessungsbetriebsspannung U_{e}	AC	٧	690
Frequenz		Hz	50 60 ¹⁾
Bemessungsstrom /nA			
Aluminiumschienen		Α	160 1000
Kupferschienen		Α	160 1250
Klimafestigkeit			
Feuchte Wärme, konstant, nach IEC 60068-2-78			40 °C / 93 % RH / 56d
Feuchte Wärme, zyklisch, nach IEC 60068-2-30			56 x (25 40 °C / 3 h; 40 °C / 9 h; 40 25 °C / 36 h; 25 °C / 6 h) 95 % RH
Kälte nach IEC 60068-2-1			-45 °C, 16 h
Temperaturwechsel nach IEC 60068-2-14			-45 55 °C; 5 Zyklen (1 °C / min); Haltezeit min. 30 min
Salznebelprüfung nach IEC 60068-2-52			Schärfegrad 3
Eisbildung nach IEC 60068-2-61			Zusammengesetzte Prüfung aus Feuchte Wärme, zyklisch + Kälte
Umgebungstemperatur min. / max. / 24 h Mittel		°C	-5 / +40 / +35
Umweltklassen nach IEC 60721			
wurden durch Prüfungen aus der Klimafestigkeit al	bgeleitet		
Klimatisch			1K5 (Lagerung) = 3K7L (Betrieb ohne Sonneneinstrahlung); 2K2 (Transport)
Chemisch aktiv			Salznebel, weitere Schadstoffe optional,
			1C2 (Lagerung) = 3C2 (Betrieb) = 2C2 (Transport)
Biologisch			Wird durch IP-Schutzarten und Verpackungsart abgedeckt.
			1B2 (Lagerung) = 3B2 (Betrieb) = 2B2 (Transport)
Mechanisch aktiv			Wird durch Schutzarten IP und Verpackungsart abgedeckt.
			1S2 (Lagerung) = 3S2 (Betrieb); 2S2 (Transport)

	BD2
Schutzart nach IEC / EN 60529 (Bauart 2)	
Schienenkästen	IP52
Schienenkästen mit Zusatzausrüstung am Schienenstrang	IP54, IP55
Einspeisekästen	IP55
Abgangskästen	IP54
Abgangskästen mit Zusatzausrüstung	IP55
Verteilereinspeisungen	IP00
Werkstoff	
Schienenkästen, Einspeisekästen, Abgangskästen	feuerverzinktes, lackiertes Stahlblech, lichtgrau (RAL 7035) Gehäuse feuerverzinktes Stahlblech, Deckel lackiert, Farbe lichtgrau, RAL 7035
Ausnahme: Abgangskästen BD2-AK1/	Isolierstoffgehäuse, lichtgrau (RAL 7035)
Stromschienen:	
Aluminium	vernickelte und verzinnte Al-Schienen
Kupfer	verzinnte Cu-Schienen
Einbaulage	hochkant, flach, vertikal

¹⁾ Gemäß EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

3.3.2 Abgangskästen

Тур	BD2-AK2, BD2-AK3						
Bemessungsstrom Inc	25 A	63 A	125 A	250 A	400 A		
Schaltvermögen des Kontaktapparats	AC-22B	-	_	_	-		
Schaltvermögen des eingebauten Trennschalters nach DIN EN 60947-3 bei 400 V	-	AC-22B	AC-21B	-	_		

Wichtiger Projektierungshinweis

Nicht jeder Abgangskasten hat eine Bemessungsspannung von 690 V und eine Kurzschlussfestigkeit entsprechend der Systemgröße.

Die eingesetzten Abgangskästen müssen mit ihrer Kurzschlussfestigkeit und Bemessungsspannung zu den in der Anlage erforderlichen Werten passen.

Bei Nichtübereinstimmung mit der Bemessungsspannung muss ein Abgangskasten mit passenden Einbauten gewählt werden. Bei größeren Kurzschluss-Strömen müssen diese durch vorgeschaltete Schutzgeräte (z. B. Leistungsschalter) begrenzt werden.

3.3.3 Schienenkästen BD2A (Aluminium)

				BD2A160	BD2A250	BD2A400
Strombahnen						
Bemessungsisolationsspannung U_1		AC / DC	V	690 / 800	690 / 800	690 / 800
Überspannungskategorie / Verschn	nutzungsgrad			III/3	III/3	III/3
Bemessungsbetriebsspannung U_{e}		AC	V	690	690	690
Frequenz			Hz	50 60	50 60	50 60
Bemessungsstrom h_A = therm. Nem max. 40 °C und 35 °C im 24-h-Mitte			Α	160	250	400
Impedanzbelag der Strombahnen b	ei 50 Hz und	20 °C Umge	bungstempe	eratur (Schiene im	kalten Zustand)
Wirkwiderstand		R ₂₀	mΩ/m	0,484	0,302	0,167
Blindwiderstand		X ₂₀	mΩ/m	0,162	0,131	0,123
Scheinwiderstand		Z ₂₀	mΩ/m	0,511	0,330	0,207
Impedanzbelag der Strombahnen b	ei 50 Hz und	20 °C Umge	bungstempe	eratur (Schiene im	betriebswarme	n Zustand)
Wirkwiderstand		R ₁	mΩ/m	0,588	0,375	0,215
Blindwiderstand		X ₁	mΩ/m	0,160	0,128	0,122
Scheinwiderstand		Z ₁	mΩ/m	0,610	0,397	0,247
Impedanzbelag der Strombahnen in	n Fehlerfall					
Wechselstromwiderstandsbelag		R_F	mΩ/m	0,959	0,673	0,548
Blindwiderstandsbelag		XF	mΩ/m	0,681	0,487	0,456
Impedanzbelag		Z _F	mΩ/m	1,159	0,831	0,713
Nullimpedanz nach	Phasen-N	R ₀	mΩ/m	2,050	1,340	1,217
DIN EN 60909-0 / VDE 0102		X ₀	mΩ/m	0,884	0,750	0,640
		Z ₀	mΩ/m	2,232	1,535	1,375
	Phasen-	R ₀	mΩ/m	2,018	1,071	1,059
	PE	X ₀	mΩ/m	0,416	0,567	0,518
		Z ₀	mΩ/m	2,061	1,212	1,179
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit /pk			kA	17	32	40
Bemessungskurzzeitstromfestigkeit	/ _{cw}	t = 1 s	kA	5,5	10	16
		t = 0,1 s	kA	10	16	20
Leiter						
Leiteranzahl				5	5	5
Leiterquerschnitt		L1, L2, L3	mm²	63	108	205
		N	mm²	63	108	205
		PE	mm²	63	108	205
		1/2 PE	mm²	63	108	205
Leitermaterial				Al	Al	Al

		BD2A160	BD2A250	BD2A400
Max. Befestigungsabstände der Schienenka	ästen bei üblicher mechanisch	er Belastung		
hochkant	m	4	4	4
hochkant mit BD2-BD1)	m	4	4	4
flach	m	3,5	3,5	3,5
Brandlast ²⁾	kWh/m	1,32	1,32	1,32
Gewicht ³⁾	kg/m	5,3	5,8	7,5

¹⁾ Bei Verwendung von Distanzbügel BD2-BD

³⁾ Gewichte ohne Klemmblock (Gewicht Klemmblock BD2-400-EK: 3,5 kg, BD2-1250-EK: 6,5 kg

Тур				BD2A630	BD2A800	BD2A1000
Strombahnen						
Bemessungsisolationsspannung U	1	AC / DC	V	690 / 800	690 / 800	690 / 800
Überspannungskategorie / Verschr	nutzungsgrad			III/3	III/3	III/3
Bemessungsbetriebsspannung U_{e}		AC	V	690	690	690
Frequenz			Hz	50 60	50 60	50 60 ¹⁾
Bemessungsstrom I_{nA} = therm. Nermax. 40 °C und 35 °C im 24-h-Mitte			Α	630	800	1000
Impedanzbelag der Strombahnen b	oei 50 Hz und	20 °C Umge	ebungstempe	eratur (Schiene im	kalten Zustand)
Wirkwiderstand		R ₂₀	mΩ/m	0,093	0,073	0,051
Blindwiderstand		X ₂₀	mΩ/m	0,065	0,058	0,058
Scheinwiderstand		Z ₂₀	mΩ/m	0,113	0,094	0,077
Impedanzbelag der Strombahnen b	oei 50 Hz und	20 °C Umge	ebungstempe	eratur (Schiene im	betriebswarme	n Zustand)
Wirkwiderstand		R ₁	mΩ/m	0,134	0,098	0,066
Blindwiderstand		X ₁	mΩ/m	0,065	0,057	0,057
Scheinwiderstand		Z ₁	mΩ/m	0,149	0,114	0,088
Impedanzbelag der Strombahnen i	m Fehlerfall					
Wechselstromwiderstandsbelag		R _F	mΩ/m	0,199	0,225	0,157
Blindwiderstandsbelag		X _F	mΩ/m	0,179	0,239	0,240
Impedanzbelag		Z _F	mΩ/m	0,268	0,328	0,287
Nullimpedanz nach	Phasen-N	R ₀	mΩ/m	0,429	0,494	0,340
DIN EN 60909-0 / VDE 0102		X ₀	mΩ/m	0,377	0,312	0,301
		Z ₀	mΩ/m	0,571	0,584	0,454
	Phasen-	R ₀	mΩ/m	0,432	0,438	0,408
PE		X ₀	mΩ/m	0,329	0,280	0,273
		Z ₀	mΩ/m	0,543	0,520	0,491
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit /pk			kA	64	84	90
Bemessungskurzzeitstromfestigkei	t / _{cw}	t = 1 s	kA	26	32	34
		t = 0,1 s	kA	32	40	43

²⁾ Werte für Schienenkästen mit Abgangsstellen

3.3 Technische Daten

Тур			BD2A630	BD2A800	BD2A1000
Leiter					
Leiteranzahl			5	5	5
Leiterquerschnitt	L1, L2, L3	mm²	381	446	699
	N	mm²	381	446	699
	PE	mm²	381	446	699
	1/2 PE	mm²	381	381	446
Leitermaterial			Al	Al	Al
Max. Befestigungsabstände der Sch	nienenkästen bei üblicher	mechanisch	er Belastung		
hochkant		m	3,5	3,5	3
hochkant mit BD2-BD2)		m	1,75	1,75	1,5
flach		m	3	3	2,5
Brandlast ³⁾		kWh/m	2	2	2
Gewicht ⁴⁾		kg/m	12,3	12,4	15,8

¹⁾ Gemäß EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

²⁾ Bei Verwendung von Distanzbügel BD2-BD

Werte für Schienenkästen mit Abgangsstellen

⁴⁾ Gewichte ohne Klemmblock (Gewicht Klemmblock BD2-400-EK: 3,5 kg, BD2-1250-EK 6,5 kg)

3.3.4 Schienenkästen BD2C (Kupfer)

				BD2C160	BD2C250	BD2C400
Strombahnen						
Bemessungsisolationsspannung L	J	AC / DC	V	690 / 800	690 / 800	690 / 800
Überspannungskategorie / Versch	d		III/3	III/3	III/3	
Bemessungsbetriebsspannung U_{e}	ı	AC	V	690	690	690
Frequenz			Hz	50 60	50 60	50 60
Bemessungsstrom I_{nA} = therm. Ne max. 40 °C und 35 °C im 24-h-Mitt			Α	160	250	400
Impedanzbelag der Strombahnen	bei 50 Hz und	l 20 °C Umge	bungstempe	ratur (Schiene im	kalten Zustand)
Wirkwiderstand		R ₂₀	mΩ/m	0,303	0,295	0,144
Blindwiderstand		X ₂₀	mΩ/m	0,157	0,158	0,119
Scheinwiderstand		Z ₂₀	mΩ/m	0,341	0,335	0,187
Impedanzbelag der Strombahnen	bei 50 Hz und	l 20 °C Umge	bungstempe	ratur (Schiene im	betriebswarme	n Zustand)
Wirkwiderstand		R ₁	mΩ/m	0,333	0,383	0,181
Blindwiderstand		X ₁	mΩ/m	0,157	0,159	0,120
Scheinwiderstand		Z ₁	mΩ/m	0,368	0,419	0,217
Impedanzbelag der Strombahnen	im Fehlerfall					
Wechselstromwiderstandsbelag		R_{F}	mΩ/m	0,666	0,674	0,364
Blindwiderstandsbelag		XF	mΩ/m	0,511	0,530	0,461
Impedanzbelag		Z _F	mΩ/m	0,839	0,858	0,587
Nullimpedanz nach	Phasen-	R ₀	mΩ/m	1,419	1,429	0,718
DIN EN 60909-0 / VDE 0102	N	X ₀	mΩ/m	0,691	0,703	0,658
		Z ₀	mΩ/m	1,579	1,593	0,974
	Phasen-	R ₀	mΩ/m	1,027	1,139	0,672
	PE	X ₀	mΩ/m	0,641	0,530	0,503
		Z_0	mΩ/m	1,211	1,256	0,839
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit /p	k		kA	17	32	40
Bemessungskurzzeitstromfestigke	eit /cw	t = 1 s	kA	5,5	10	16
		t = 0,1 s	kA	10	16	20
Leiter						
Leiteranzahl				5	5	5
Leiterquerschnitt		L1, L2, L3	mm²	63	63	146
		N	mm²	63	63	146
		PE	mm²	63	63	146
		1/2 PE	mm²	63	63	146
Leitermaterial				Cu	Cu	Cu
· · · · · · · · · · · · · · · · · · ·	·		·		· · · · · · · · · · · · · · · · · · ·	·

3.3 Technische Daten

	_	BD2C160	BD2C250	BD2C400
Max. Befestigungsabstände der Schienenkästen I	bei üblicher mechanisch	er Belastung		
hochkant	m	4	4	4
hochkant mit BD2-BD1)	m	4	4	4
flach	m	3,5	3,5	3,5
Brandlast ²⁾	kWh/m	1,32	1,32	1,32
Gewicht ³⁾	kg/m	7,3	7,5	9,5

¹⁾ Bei Verwendung von Distanzbügel BD2-BD

³⁾ Gewichte ohne Klemmblock (Gewicht Klemmblock BD2-400-EK: 3,5 kg, BD2-1250-EK 6,5 kg)

Тур				BD2C630	BD2C800	BD2C1000	BD2C1250
Strombahnen							
Bemessungsisolationsspa	annung <i>U</i> i	AC / DC	V	690 / 800	690 / 800	690 / 800	690 / 800
Überspannungskategorie schmutzungsgrad	/ Ver-			III/3	III/3	III/3	III/3
Bemessungsbetriebsspar	nnung <i>U</i> e	AC	V	690	690	690	690
Frequenz			Hz	50 60	50 60	50 60 ¹⁾	50 60 ¹⁾
Bemessungsstrom h _A = th Nennstrom bei max. 40 °C im 24-h-Mittel			Α	630	800	1000	1250
Impedanzbelag der Strom	nbahnen bei	50 Hz und 2	0 °C Umge	ebungstemperat	ur (Schiene im l	kalten Zustand)	
Wirkwiderstand		R ₂₀	mΩ/m	0,053	0,053	0,043	0,032
Blindwiderstand		X ₂₀	mΩ/m	0,064	0,064	0,056	0,054
Scheinwiderstand		Z ₂₀	mΩ/m	0,083	0,083	0,071	0,063
Impedanzbelag der Strom	nbahnen bei	50 Hz und 2	0 °C Umge	ebungstemperat	ur (Schiene im l	betriebswarmen	Zustand)
Wirkwiderstand		R ₁	mΩ/m	0,076	0,076	0,056	0,041
Blindwiderstand		X ₁	mΩ/m	0,064	0,064	0,056	0,054
Scheinwiderstand		Z ₁	mΩ/m	0,100	0,100	0,079	0,068
Impedanzbelag der Strom	nbahnen im l	Fehlerfall					
Wechselstromwiderstands	sbelag	R _F	mΩ/m	0,102	0,102	0,118	0,094
Blindwiderstandsbelag		X _F	mΩ/m	0,146	0,146	0,234	0,229
Impedanzbelag		Z_{F}	mΩ/m	0,178	0,178	0,262	0,248
Nullimpedanz nach	Phasen-	R_0	mΩ/m	0,280	0,280	0,234	0,186
DIN EN 60909-0 / VDE 0102	N	X_0	mΩ/m	0,377	0,377	0,286	0,275
VDE UIUZ		Z ₀	mΩ/m	0,470	0,470	0,370	0,332
	Phasen-	R ₀	mΩ/m	0,289	0,289	0,230	0,174
	PE	X_0	mΩ/m	0,321	0,321	0,278	0,265
		Z ₀	mΩm	0,431	0,431	0,361	0,317

²⁾ Werte für Schienenkästen mit Abgangsstellen

Тур			BD2C630	BD2C800	BD2C1000	BD2C1250
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit /pk		kA	64	84	90	90
Bemessungskurzzeitstromfestigkeit	t = 1 s	kA	26	32	34	34
/ _{cw}	t = 0,1 s	kA	32	40	43	43
Leiter						
Leiteranzahl			5	5	5	5
Leiterquerschnitt	L1, L2, L3	mm²	415	415	468	699
	N	mm²	415	415	468	699
	PE	mm²	415	415	468	699
	1/2 PE	mm²	415	415	415	468
Leitermaterial			Cu	Cu	Cu	Cu
Max. Befestigungsabstände der Schi	enenkästen b	ei üblicher	mechanischer	Belastung		
hochkant		m	4	3,5	3	2
hochkant mit BD2-BD ²⁾		m	2	1,75	1,5	1
flach		m	3,5	3	2,5	1,5
Brandlast ³		kWh/m	2	2	2	2
Gewicht ⁴⁾		kg/m	15,6	18,9	25,1	37,6

¹⁾ Gemäß EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

²⁾ Bei Verwendung von Distanzbügel BD2-BD

³⁾ Werte für Schienenkästen mit Abgangsstellen

⁴⁾ Gewichte ohne Klemmblock (Gewicht Klemmblock BD2-400-EK: 3,5 kg, BD2-1250-EK 6,5 kg)

3.3 Technische Daten

3.3.5 Anschlussquerschnitte

3.3.5.1 Einspeisungen

Anschlussquerschnitte²⁾

Ausführung	Тур	L1, L2, L	3	N		PE		Größe
		min. mm²	max. mm²	min. mm²	max. mm²	min. mm²	max. mm²	Anschluss- schrauben, Bolzen
								L1, L2, L3, N, PE
Einspeisekäs- ten mit Bol-	BD2250-EE	1 × 6	1 × 150, 2 × 70	1 × 6	1 × 150, 2 × 70	1 × 6	1 × 150, × 70	M10
zenanschluss	BD2400-EE	1 × 10 ¹⁾	1 × 240, 2 × 120	1 × 10 ¹⁾	1 × 240, 2 × 120	1 × 10 ¹⁾	1 × 240, 2 × 120	M12
	BD21000-EE	1 × 10 ¹⁾	3 × 240	1 × 10 ¹⁾	3 × 240	1 × 10 ¹⁾	3 × 240	M12
	BD21250-EE	1 × 10 ¹⁾	3 × 300, 4 × 240	1 × 10 ¹⁾	3 × 300, 4 × 240	1 × 10 ¹⁾	3 × 300, 4 × 240	M12
Einspeisekäs- ten mit Last-	BD2C-250(315)- EESC	1 x 10 ¹⁾	1 x 240	1 x 10 ¹⁾	1 x 240	Armierun	g	M10
trennschalter	BD2C-400-EESC	1 x 10 ¹⁾	1 x 240, 2 x 120	1 x 10 ¹⁾	1 x 240, 2 x 120	Armierun	g	M12
	BD2C-630(800)- EESC	1 x 10 ¹⁾	2 x 240	1 x 10 ¹⁾	2 x 240	Armierun	g	M12
Mitteneinspei- sekästen mit	BD2400-ME	1 × 10 ¹⁾	2 × 240, 3 × 185	1 × 10 ¹⁾	2 × 240, 3 × 185	1 × 10 ¹⁾	2 × 240, 3 × 185	M12
Bolzenan- schluss	BD21000-ME	1 × 10 ¹⁾	(1 - 5) × 300	1 × 10 ¹⁾	(1 - 5) × 300	1 × 10 ¹⁾	(1 - 5) × 300	M12

¹⁾ Minimal möglicher Kabelquerschnitt für Kabelschuhe

Kabel- und Leitungseinführungen

Тур		BD2250-EE	BD2400-EE	BD21000-EE, BD2400-ME	BD21000-ME	BD21250-EE
Kabeltüllen für Ka-		1 x KT3 ¹⁾	2 x KT4 ¹⁾	3 x KT4 ¹⁾	6 x KT4 ¹⁾	4 x KT4 ¹⁾
beldurchmesser	mm	14 54	14 68	14 68	14 68	14 68

¹⁾ Mit Zugentlastung

²⁾ Anschlussquerschnitte beziehen sich auf CU-Leitungen, Querschnitte und Durchmesser für AL-Leitungen auf Anfrage

Kabeleinführungsplatte Einleitersystem (Kabeleinführungsplatten ungebohrt)

Тур	BD2250-EE	BD2250-EE BD2400-EE		BD21250-EE	
Kabeleinführungsplatte	BD2-250-EBAL	BD2-400-EBAL	BD2-1000-EBAL	BD2-1250-EBAL	
Anzahl Leitungseinführungen (maximal)	10 x M32, 5 x M40	10 x M40	15 x M40, 6 x M50 und 4 x M40	20 x M40	

Verwenden Sie Kabelverschraubungen aus Kunststoff mit Zugentlastung (nicht im Lieferumfang enthalten).

Kabeleinführungsplatte Einleitersystem bei Mitteneinspeisungen (Kabeleinführungsplatten ungebohrt)

Тур	BD2400-ME	BD21000-ME	
Kabeleinführungsplatte	BD2-400-MBAL	BD2-1000-MBAL	
Anzahl Leitungseinführungen (maximal)	12 x M40 und 3 x M32, 6 x M50 und 4 x M40	31 x M40, 16 x M50 und 4 x M40	

Verwenden Sie Kabelverschraubungen aus Kunststoff mit Zugentlastung (nicht im Lieferumfang enthalten).

Kabeleinführungsplatte Einspeisung mit Lasttrennschalter (Kabeleinführungsplatten ungebohrt)

Тур	BD2C-250(315, 400)-EESC	BD2C-630(800)-EESC
Anzahl Leitungseinführungen	1 x 65,7 mm	2 x 65,7 mm
(maximal)		

3.3.5.2 Abgangskästen

Anschlussquerschnitte¹⁾

Bezeich- nung	Тур	L1, L2, L3		N		PE		Größe
		min mm²	max mm²	min mm²	max mm²	min mm²	max mm²	Anschluss- Schrau- ben, Bol- zen L1, L2, L3
bis 25 A	BD2-AK1/S14	0,5 (f, m)	4 (e)	1 (e, f, m)	6 (e, m)	1 (e, f, m)	6 (e, m)	_
	BD2-AK1/S18	0,5 (f, m)	16 (e, f, m)	1 (e, f, m)	6 (e, m)	1 (e, f, m)	6 (e, m)	_
	BD2-AK1/A	0,75 (e, m)	16 (e)	1 (e, f, m)	6 (e, m)	1 (e, f, m)	6 (e, m)	_
	BD2-AK1/AN	0,75 (e, m)	16 (e)	0,75 (e, m)	16 (e)	1 (e, f, m)	6 (e, m)	-
	BD2-AK1/F	0,75 (e, m)	16 (e)	1 (e, m)	6 (e)	1 (e, f, m)	6 (e, m)	-
	BD2-AK1/FN	0,75 (e, m)	16 (e)	0,75 (e, m)	16 (e)	1 (e, f, m)	6 (e, m)	-
bis 63 A	BD2-AK.2X/S18	0,5 (f, m)	25 (f, m)	1 (e, f, m)	6 (e, m)	1 (e, f, m)	6 (e, m)	_
	BD2-AK.2X/S27	0,75 (f, m)	10 (e, f, m)	1 (e, f, m)	6 (e, m)	1 (e, f, m)	6 (e, m)	_
	BD2-AK.2X/S33	1,5 (f, m)	25 (f, m)	2,5 (e, f, m)	16 (e, m)	2,5 (e, f, m)	16 (e, m)	_
	BD2-AK.2M2/A	0,75 (e, m)	25 (m)	2,5 (e, f, m)	25 (m)	2,5 (e, f, m)	25 (m)	_
	BD2-AK.2M2/AN	0,75 (e, m)	25 (m)	0,75 (e, f, m)	25 (m)	2,5 (e, f, m)	25 (m)	_
	BD2-AK.2X/F	0,75 (e, m)	25 (m)	2,5 (e, f, m)	25 (m)	2,5 (e, f, m)	25 (m)	_
bis 125 A	BD2- AK03X/F(FS)	2,5 (e, m)	50 (m)	2,5 (e, m)	50 (m)	2,5 (e, m)	50 (m)	-
	BD2-AK.03X/ LS	2,5 (e, m)	50 (m)	2,5 (e, m)	50 (m)	2,5 (e, m)	50 (m)	-
	BD2-AK3X/GS00	16	70	16	70	10	70	M8
	BD2- 16 AK.3X/GSTZ(A)00	16	70	16	70	10	70	M8
bis 250 A	BD2-AK04/SNH1	6	150	6	150	6	150	M10
	BD2-AK04/FS	6	150	6	150	6	150	M10
	BD2-AK04/LS	6	120 (m)	6 (e, m)	150	6	150	M8
bis 400 A	BD2-AK05/SNH2	10	2 × 120	10	2 × 120	10	2 × 120	M10
	BD2-AK05/FS	10	2 × 120	10	2 × 120	10	2 × 120	M10
	BD2-AK05/LS	10	2 × 120	10	2 × 120	10	2 × 120	M8
bis 630 A	BD2-AK06/SNH3	10	2 × 240	10	2 × 240	10	2 × 240	M12
	BD2-AK06/LS	10	2 × 240	10	2 × 240	10	2 × 240	M10

e = eindrähtig, m = mehrdrähtig, f = feindrähtig mit Aderendhülse

Anschlussquerschnitte beziehen sich auf CU-Leitungen, Querschnitte und Durchmesser für AL-Leitungen auf Anfrage

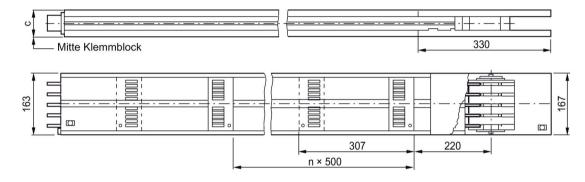
Kabel- und Leitungseinführungen

Тур		BD2-AK1/	BD2-AK.2	BD2-AK.3	BD2-AK04	BD2-AK05	BD2-AK06
Kabeltüllen		M25 ²⁾	_	_	KT3 ³⁾	2 × KT4 ³⁾	2 × KT4 ³⁾
Kabelverschraubu	ıngen ¹⁾	_	M25, M32, M40	M25, M40, M63	_	_	_
Für Kabeldurch- messer	mm	11 6	11 27	11 42	14 54	14 68	14 68
Min. / max. einfüh	rbare Ka	belquerschnitte	für NYY und NY	CWY bei Mehr	leiterkabel für		
• NYY	mm ²	5 × 1,5 5 × 4	5 × 1,5 5 × 16	5 × 1,5 5 × 25	_	_	_
• NYCWY ⁴⁾	mm ²	4 × 1,5 4 × 2,5	4 × 1,5 4 × 16	4 × 1,5 4 × 70	5 × 1,5 4 × 150	2 × 5 × 1,5 2 × 4 × 150	2 × 5 × 10 2 × 4 × 240
Kabeleinführungs	platte bei	i Einleiterkabel (angebaute Platt	en, ungebohrt)			
Anzahl Leitungsei rungen, max.	nfüh-	_	_	_	10 × M40	10 × M32, 5 × M40	10 × M40

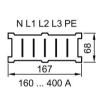
¹⁾ Bei Kabelverschraubungen: Verwenden Sie Kabelverschraubungen aus Kunststoff mit Zugentlastung (nicht im Lieferumfang enthalten).

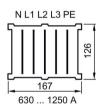
²⁾ Zugentlastung im BD2-AK1/...

³⁾ Mit Zugentlastung


⁴⁾ Fünfter Leiter: Konzentrischer Leiter.

3.4 Maßzeichnungen


Soweit nicht anders angegeben, sind alle Maße in mm.


3.4.1 Gerade Schienenkästen

BD2.-.-...

Länge	Anzahl der Abgangsstellen beidseitig
[m]	n x 500
0,5 1,25	-
1,26 2,25	4 8
2,26 3,25	8 12
	Bei Wahllängen sind nicht alle Abgangsstellen mit Abgangskästen bestückbar.

3.4.2 Richtungsänderungen

L-Kästen

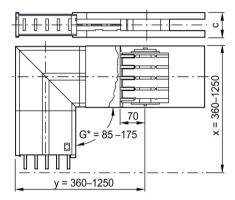


Bild 3-24 BD2.-...-LR-...(-G*), BD2.-...-LL-...(-G*)

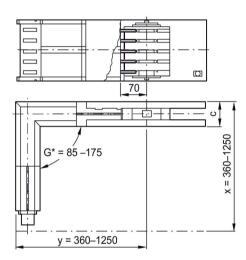


Bild 3-25 BD2.-...-LV...(-G*), BD2.-...-LH-...(-G*)

Bemessungsstrom	С	
[A]	[mm]	
160 400	68	
630 1250	126	

Z-Kästen

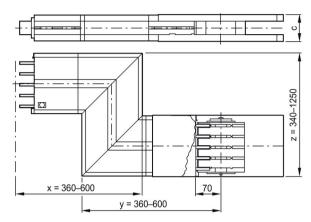


Bild 3-26 BD2.-...-ZR-..., BD2.-...-ZL-...

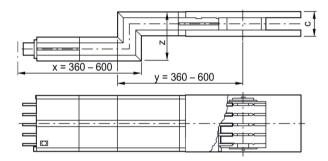


Bild 3-27 BD2.-...-ZV, BD2.-...-ZH-...

Bemessungsstrom	z	
[A]	[mm]	
160 400	140 1250	
630 1250	260 1250	

T-Kästen

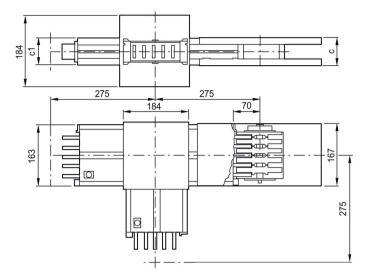


Bild 3-28 BD2.-...-TR, BD2.-...-TL

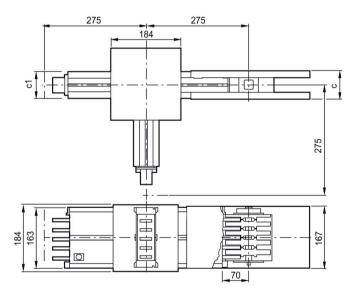


Bild 3-29 BD2.-...-TV, BD2.-...-TH

Bemessungsstrom	С	c1
[A]	[mm]	[mm]
160 400	68	64
630 1250	126	122

K-Kästen

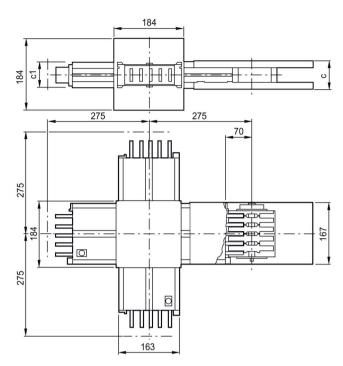


Bild 3-30 K-Kästen BD2.-...-KRL

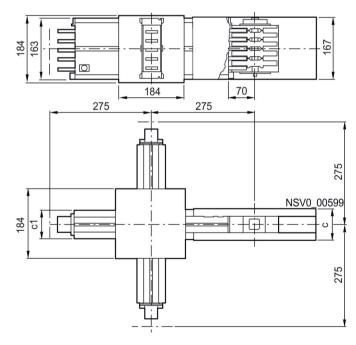


Bild 3-31 K-Kasten BD2.-...-KVH

Bemessungsstrom [A]	c [mm]	c1 [mm]
160 400	68	64
630 1250	126	122

Bewegliche Richtungsänderungen

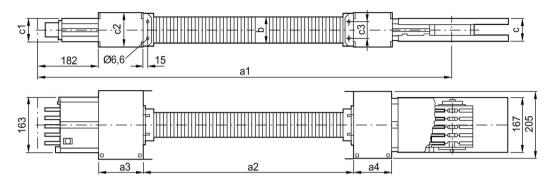
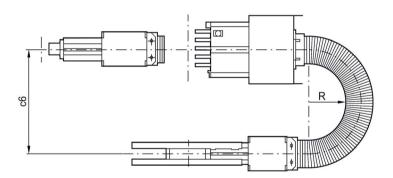
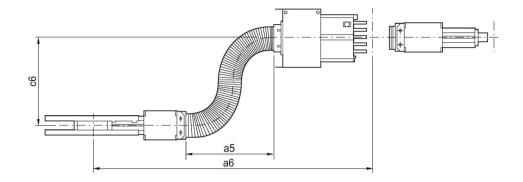



Bild 3-32 BD2-400-R, BD2-800-R

Тур	a1	a2	a3	a4	b	С	c1	c2	с3
BD2-400-R	1250	512	187	187	79	68	64	101	50
BD2-800-R	1750	786	350	250	146,5	126	122	195	145


Form U

Тур	c6	R _{min}
BD2-400-R	220	110
BD2-800-R	340	170

3.4 Maßzeichnungen

Form Z

Тур	а5	a6	с6	R _{min}	
BD2-400-R	175	1000	355	110	
BD2-800-R	530	1590	400	170	

3.4.3 Verteilereinspeisung

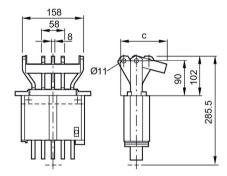


Bild 3-33 BD2.-250-VE

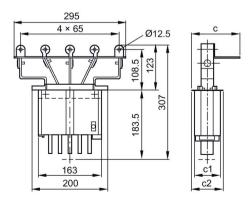


Bild 3-34 BD2.-400-VE, BD2.-1000-VE

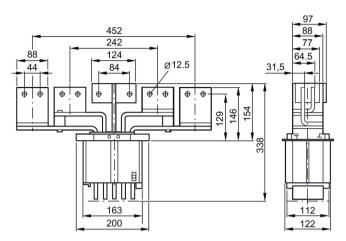
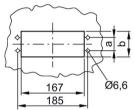



Bild 3-35 BD2.-1250-VE

Gehäuseausschnitt

Тур	а	b	С	c1	c2
BD2250-VE BD2400-VE	34	68	121	64	84
BD21000-VE BD21250-VE	92	126	155,5	122	142

3.4.4 Endeinspeisekästen

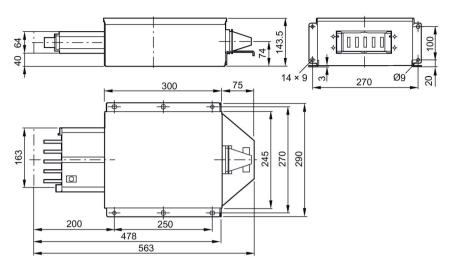


Bild 3-36 BD2.-250-EE

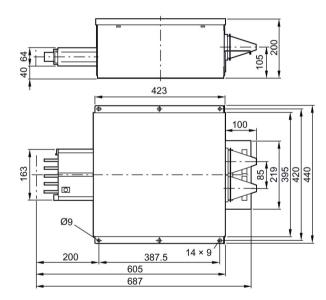
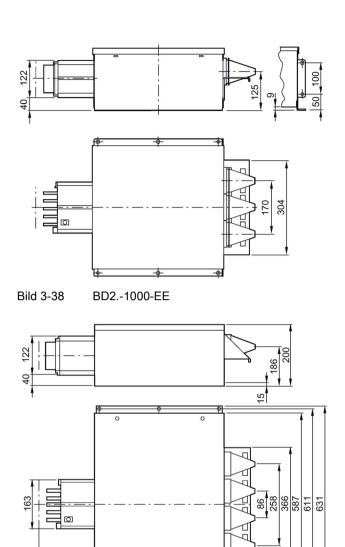



Bild 3-37 BD2.-400-EE

386,5

606 688

Bild 3-39 BD2.-1250-EE

200

Endeinspeisungen mit Lasttrennschalter

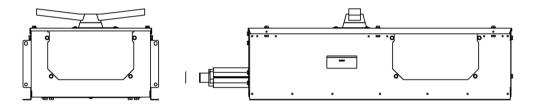



Bild 3-40 BD2C-250-EESC, BD2C-315-EESC

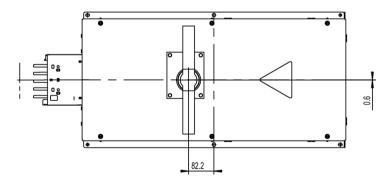


Bild 3-41 BD2-400-EESC

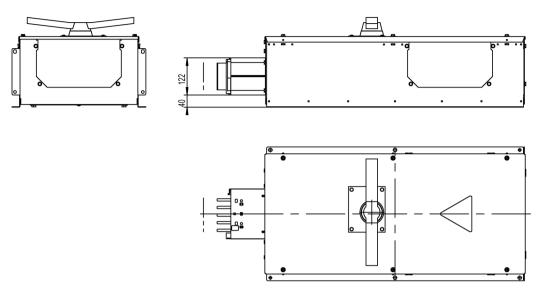


Bild 3-42 BD2-630-EESC, BD2-800-EESC

3.4.5 Kabelräume

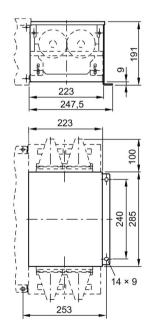


Bild 3-43 BD2-400-KR (BD2.-400-EE)

3.4 Maßzeichnungen

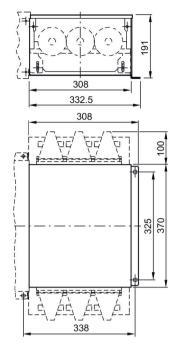


Bild 3-44 BD2-1000-KR (BD2.-1000-EE)

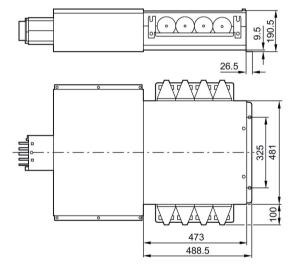


Bild 3-45 BD2-1250-KR (BD2.-1250-EE)

3.4.6 Mitteneinspeisung

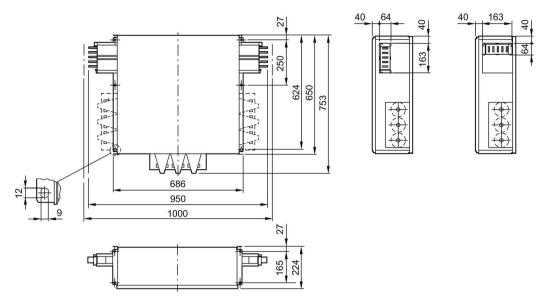


Bild 3-46 BD2.-400-ME

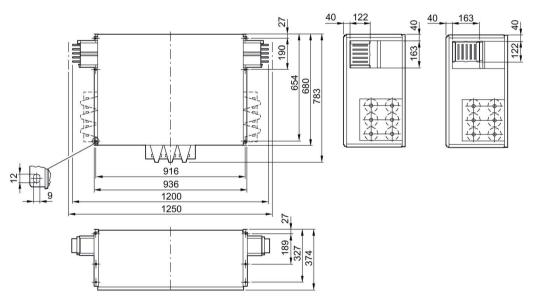


Bild 3-47 BD2.-1000-ME

3.4.7 Abgangskästen

3.4.7.1 Abgangskästen bis 25 A

Größe 1 bis 25 A

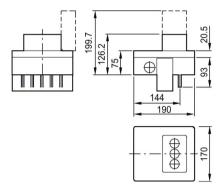
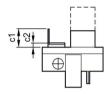



Bild 3-48 BD2-AK1/...

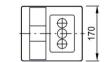


Bild 3-49 BD2-AK1/3SD163...

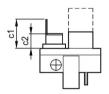
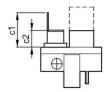


Bild 3-50 BD2-AK1/2CEE163...



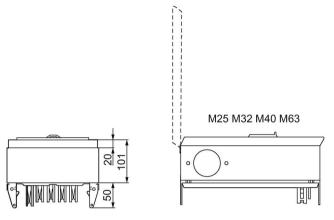


Bild 3-51 BD2-AK1/CEE165...

Тур	c1	c2
BD2-AK1/3SD163	71	13
BD2-AK1/2CEE163	88	44
BD2-AK1/CEE165	106	52

3.4.7.2 Abgangskästen bis 63 A

Größe 02 bis 63 A



Bild 3-52 Größe 02 bis 63 A

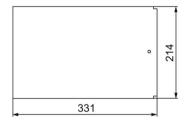


Bild 3-53 BD2-AK02X/F..., BD2-AK02X/S...

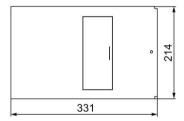


Bild 3-54 BD2-AK02M2/A..., BD2-AK02M2/F...

Größe 2 bis 63 A

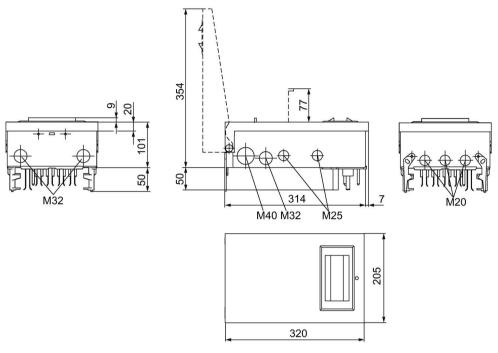


Bild 3-55 BD2-AK2X/F..., BD2-AK2X/S...

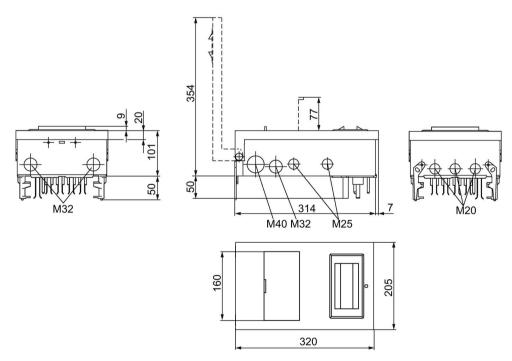


Bild 3-56 BD2-AK2M2/A..., BD2-AK2M2/F...

3.4 Maßzeichnungen

Ausführungen mit CEE- und SCHUKO-Steckdosen

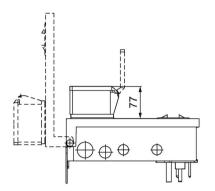
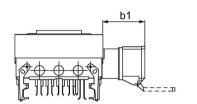
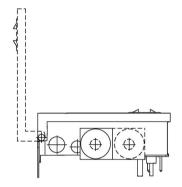




Bild 3-57 BD2-AK2X/CEE635S33

BD2-AK2X/CEE..., BD2-AK2M2/CEE...

BD2-AK2X/CEE..., BD2-AK2M2/CEE...

BD2-AK2X/CEE325S33 BD2-AK2M2/CEE325A323 BD2-AK2X/2CEE165S14 BD2-AK2M2/2CEE165A163 BD2-AK2X/2CEE165S27 (/FORMP) BD2-AK2M2/CEE165... BD2-AK2M2/CEE325...

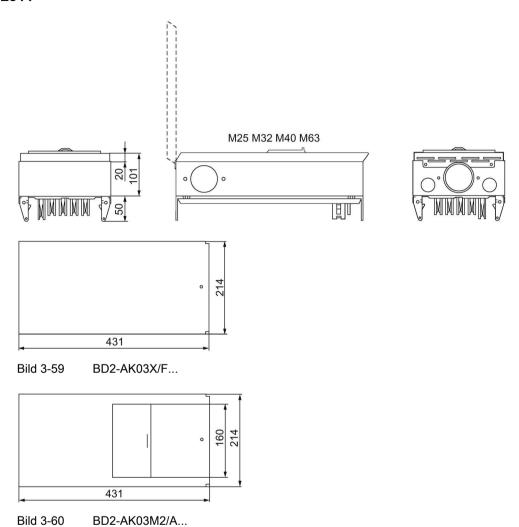
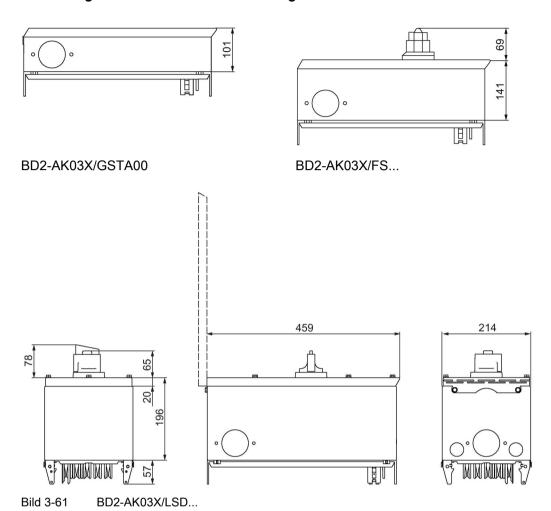


Bild 3-58 BD2-AKM2/2SD163CEE165/A163


Тур	b1	b2
BD2-AK2X/CEE325S33 BD2-AK2M2/CEE325A323 BD2-AK2X/2CEE165S14 BD2-AK2M2/CEE325	98	-
BD2-AK2X/2CEE165S27 (/FORMP) BD2-AK2M2/2CEE165A163 BD2-AK2M2/CEE165	86	-
BD2-AK2M2/2SD163CEE165A163	86	54

3.4.7.3 Abgangskästen bis 125 A

Größe 03 bis 125 A

Ausführungen mit Sicherungslasttrennschalter und Leistungsschalter

Größe 3 bis 125 A

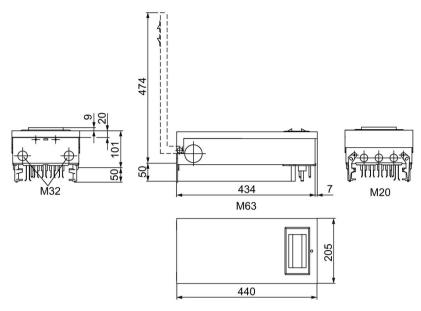


Bild 3-62 BD2-AK3X/GS00

Ausführung mit Sicherungslasttrennschalter

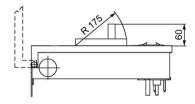


Bild 3-63 BD2-AK3X/GSTZ00

3.4.7.4 Abgangskästen bis 250 A

Größe 04 bis 250 A

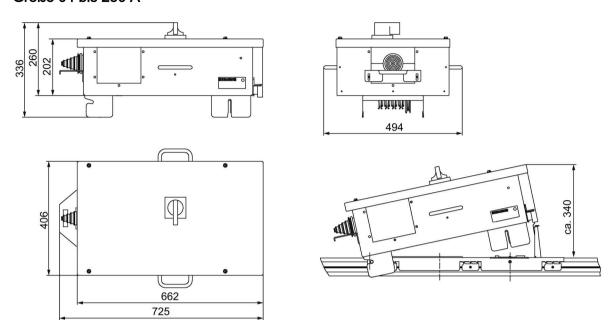
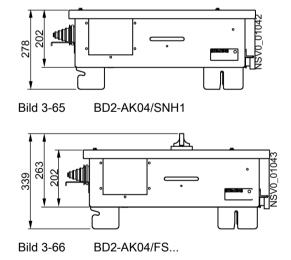



Bild 3-64 BD2-AK04/LSD...

3.4.7.5 Abgangskästen bis 530 A

Größen 05, 06 bis 530 A

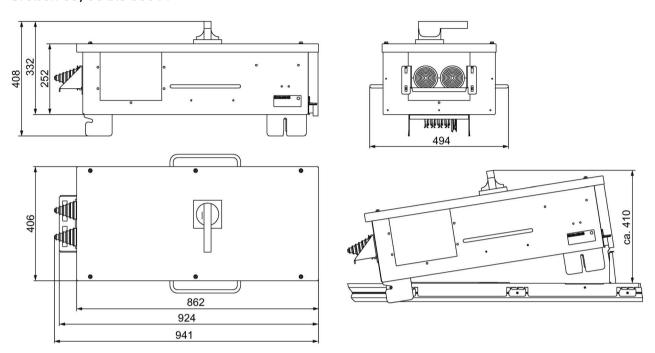


Bild 3-67 BD2-AK05/LSD..., BD2-AK06/LSD...

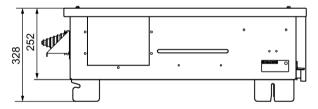


Bild 3-68 BD2-AK05/SNH2, BD2-AK06/SNH3

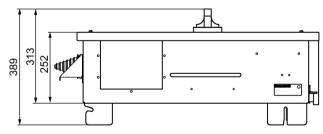
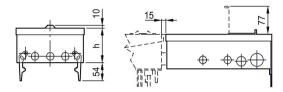
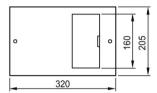
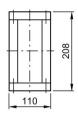



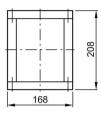
Bild 3-69 BD2-AK05/FS...

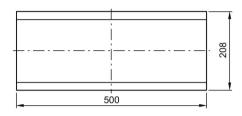
3.4.8 Gerätekästen

Тур	h
BD2-GKM2/F	101
BD2-GKX/F	151



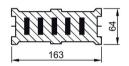

Bild 3-70 BD2-GKM2/F

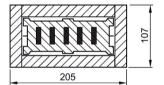



Bild 3-71 BD2-GKX/F

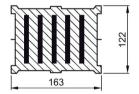
3.4.9 Zusatzausrüstung

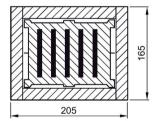
Durchführungsschutz


BD2-400-D


BD2-1250-D

BD2-...-D


Brandschutz


+BD2-S90 (S120)-...

BD2.-160 (-250, -400)-...

BD2.-630 (-800, -1000, -1250)-...

Klemmblock

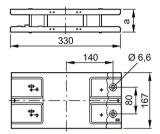
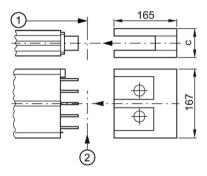



Bild 3-72 BD2-400-EK, BD2-1250-EK

Тур	а
	[mm]
BD2-400-EK	68
BD2-1250-EK	126

- 1 Länge Schienenkasten
- 2 Ende Endflansch = Mitte Klemmblock

Bild 3-73 BD2-400-FE, BD2-1250-FE

Тур	С
	[mm]
BD2-400-FE	68
BD2-1250-FE	126

Befestigung

Befestigungsbügel, flach und hochkant

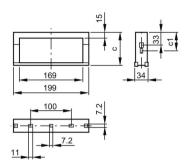


Bild 3-74 BD2-400-BB, BD2-1250-BB

Тур	С	c1
	[mm]	[mm]
BD2-400-BB	86,5	48
BD2-1250-BB	144,5	77

Distanzstück

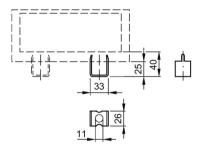


Bild 3-75 BD2-DSB

Distanzbügel

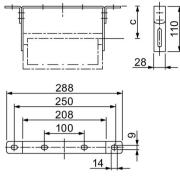
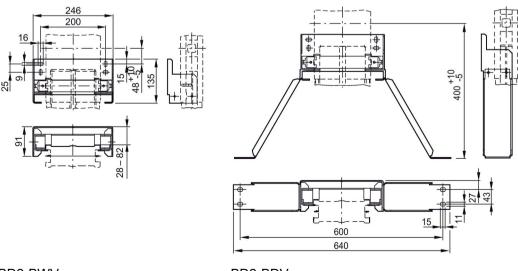


Bild 3-76 BD2-BD

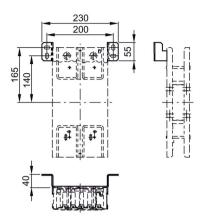
Тур	c
	[mm]
BD2-400-BD	30 82
BD2-1250-BD	50 82

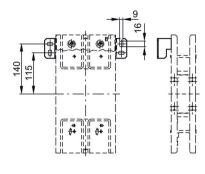

Hinweis

Montage auf Betonwand

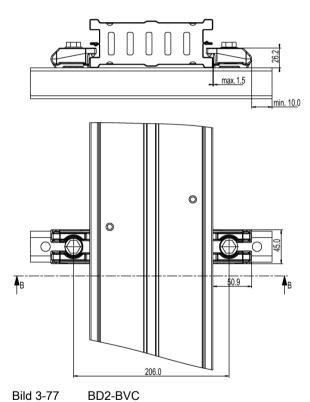
Verwenden Sie bei Montage direkt auf die Betonwand nur Stahl- und Spreizdübel, die bauaufsichtlich zugelassen sind, z. B.:

- Bestell-Nr. 15J1-A08/40 der Firma RICO
- SLM8N Art.-Nr. 50521 der Firma Fischerwerke

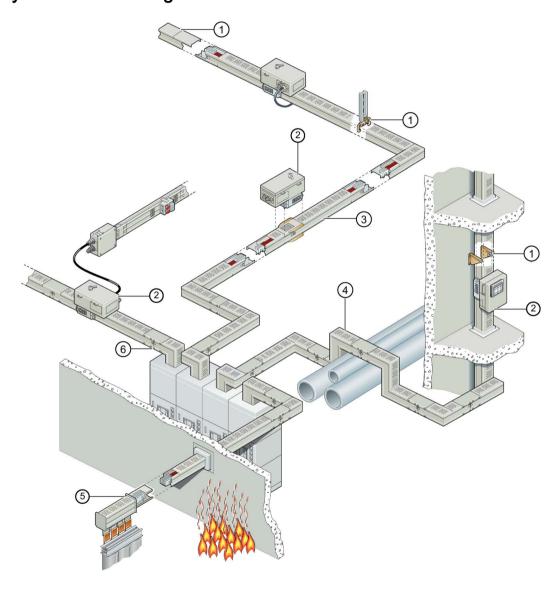

Befestigungselemente vertikal



BD2-BWV BD2-BDV


3.4 Maßzeichnungen

Befestigungsbügel vertikal



BD2-BVF

Planen mit LD

4.1 Systembeschreibung

- Zusatzausrüstung
- 2 Abgangskästen
- 3 Gerade Schienenkästen

Bild 4-1 Übersicht Schienenverteiler LD

- 4 Richtungsänderungen
- ⑤ Einspeisungen
- 6 Verteileranschlusskästen

4.2 Systemkomponenten

Der Schienenverteiler LD wird sowohl zum Energietransport als auch zur Energieverteilung eingesetzt. Das System zeichnet sich durch eine hohe Kurzschlussfestigkeit aus und eignet sich besonders für die Verbindung vom Transformator zur Niederspannungshauptverteilung und weiter zu den Unterverteilungen.

In Bereichen mit hohem Energiebedarf sind bei konventioneller Stromführung mittels Kabel häufig Parallelkabel nötig. Hier ermöglicht das System LD eine optimale Energieverteilung bei horizontalen und vertikalen Strangverläufen. Dazu stehen kodierte steckbare Abgangskästen bis 1250 A zur Verfügung, die sehr hohe Sicherheitsstandards erfüllen.

4.2 Systemkomponenten

4.2.1 Vorbemerkung für Leistungsverzeichnisse

Die Schienenverteiler sind als bauartgeprüfte Niederspannungs-Schaltgeräte-Kombination bauartgeprüft nach IEC / EN 61439-1 und -6 und als stahlblechgekapselter anschlussfertiger Verteiler anzubieten.

Die Verteiler müssen sowohl für den Energietransport, z. B. zwischen Trafo und Niederspannungs-Hauptverteilung, als auch für die Energieverteilung als flächendeckende Versorgung geeignet sein.

Das angebotene Fabrikat muss ein Komplettsystem sein, bestehend aus Systembausteinen, einschließlich Trafo- und Verteileranschlussstück, sowie Winkeln, geraden Längen und Richtungsänderungsstücken. Alle Formteile sollen in gerader sowie in versetzter Ausführung lieferbar sein.

Die Schienenkästen mit Abgangsöffnungen müssen mit kodierten Abgangskästen zu bestücken sein. Die Abgangskästen sind gegen fehlerhafte Montage gesichert. Die Lastfreiheit bei der Demontage eines Abgangskastens ist, je nach Ausführung, durch zwangsweise festgelegte Bedienvorgänge oder durch zu beachtende Hinweise sichergestellt.

Bei Bedarf soll es möglich sein, den Schienenverteiler mit einer asbestfreien Brandschottung auszurüsten, die der Feuerwiderstandsklasse S120 (El120 in Vorbereitung) entspricht und vom Amt für Bauwesen zertifiziert ist. Die Stahlblechkapselung des Schienenkastens besteht aus geformten Stahlblechprofilen, damit große Befestigungsabstände erreicht werden. Das Gehäuse ist verzinkt und in der Farbe RAL 7035, lichtgrau, lackiert.

Die äußeren Abmessungen dürfen 180 x 180 (240) mm nicht übersteigen.

Die Verbindung der einzelnen Systembausteine erfolgt durch Einhängen eines Hakens in einen Bolzen und Anziehen einer, dem heutigen Stand der Technik entsprechenden, wartungsfreien Einbolzenklemme. Die Leiterverbindungen zwischen zwei Systemkästen dürfen nicht mit Schraubenverbindungen hergestellt werden.

Das Leitermaterial besteht aus Aluminium oder, je nach Bemessungsstrom, aus Kupfer. Die Aluminiumleiter müssen vernickelt und verzinnt, die Kupferleiter verzinnt, sowie zusätzlich mit einer isolierenden Epoxidharzbeschichtung versehen sein.

Die Brandlast darf den in den technischen Daten angegebenen Wert nicht überschreiten. Richtungsänderungen mit flexibler Verbindung oder Kabelverbindungen werden nicht zugelassen.

Folgende Zertifikate bzw. Konformitätserklärungen sind dem Angebot beizulegen:

- Qualitätssicherung nach DIN ISO 9001
- Nachweis zur Sprinklerprüfung
- Nachweis zur Verhinderung der Störlichtbogenausbreitung
- Nachweis der Wartungsfreiheit.

Nach der allgemeinen Vorbemerkung wird das System entsprechend der technischen Anforderungen genau definiert:

Technische Daten Schienenverteiler LD

		LD
Bemessungsstrom		1)
Schutzart		IP34 / IP54
Einbaulage		horizontal / vertikal ²⁾
Bemessungsisolationsspannung	AC / DC	1000 V
Bemessungsbetriebsspannung	AC	1000 V
Bemessungsfrequenz		50 / 60 Hz ³⁾
Bemessungsstoßstromfestigkeit /pk		1)
Bemessungskurzzeitstromfestigkeit /cw (1 s)		1)
Leitermaterial		Al / Cu ²⁾
Anzahl der Leiter		L1 – L3 und PEN (4 Schienen / 4-polig) L1 – L3 und ½ PEN (7 Schienen / 4-polig) L1 – L3 und PEN (8 Schienen / 4-polig) L1 – L3, N, PE (5 Schienen / 5-polig) L1 – L3, ½ N, ½ PE (8 Schienen / 5-polig) L1 – L3, N, ½ PE (9 Schienen / 5-polig)
Brandlast ohne Abgangsstellen		1)
Gehäuseabmessungen	LDA1 LDC3	180 x 180 mm ²⁾
	LDA4 LDC8	240 x 180 mm ²⁾

¹⁾ Daten der gewählten Systeme eintragen. Werte siehe technische Daten.

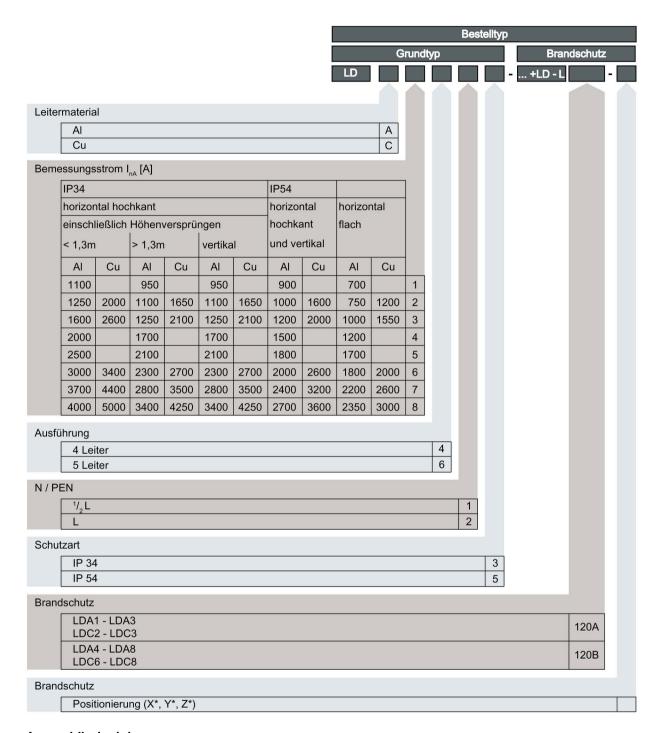
²⁾ Nicht Zutreffendes bitte streichen.

³⁾ Gemäß EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

4.2 Systemkomponenten

Wichtig für die Planung

Die Nenneinbaulage des Schienenverteilers ist die horizontale Hochkantlage der Stromschienen. In seltenen Fällen, gegeben durch einen bestimmten Strangverlauf oder durch die Option, Abgangskästen seitlich zu stecken, ist eine Flachlage der Stromschienen nicht zu vermeiden. Durch die dadurch erhöhte innere Erwärmung des Systems ist eine Reduzierung des Bemessungsstroms notwendig. Gleiches gilt für vertikale Höhenversprünge > 1,3 m (siehe Tabelle im Kapitel "Typenschlüssel (Seite 108)").


Das Schienenverteilersystem LD ist ein belüftetes System. Bei der Erhöhung der Schutzart von IP34 auf IP54 (geschlossenes System) muss der Bemessungsstrom entsprechend der Tabellen im folgenden Kapitel reduziert werden.

4.2.2 Typenschlüssel

Definition des benötigten Systems anhand des Typenschlüssels

Die Basiskomponenten des Systems LD werden mittels eines Typenschlüssels bestimmt. In Abhängigkeit des Bemessungsstroms, des Leitermaterials, der Netzform und der Schutzart wird der Typ beschrieben und ausgewählt.

Der folgende Typenschlüssel ermöglicht eine genaue Definition des benötigten Systems.

Auswahlbeispiel

In einem Projekt wird ein Bemessungsstrom von 2500 A ermittelt. Als Leitermaterial soll Aluminium verwendet werden. Vorgeschrieben ist ein 4-poliges System. Der Querschnitt des Schutzleiters soll gleich dem Außenleiterquerschnitt sein. Die benötigte Schutzart ist IP34. Die Verlegung erfolgt horizontal hochkant ohne Höhenversprünge. Mithilfe der oben aufgeführten Tabelle ergibt sich folgender Typ:

LDA 5423

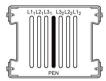
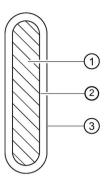
4.2.3 Baugrößen, Leiterkonfigurationen und Aufbau des Schienenpakets

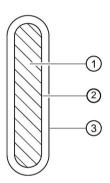
Das Schienenverteilersystem LD wird in zwei Baugrößen ausgeführt. Zusätzlich können Sie entsprechend Ihrer Applikation die Netzform (4-polig / 5-polig) und die Größe des N / PEN-Querschnitts wählen.

Leiterkonfiguration	4-polig	5-polig
180 mm x 180 mm	PEN = L	PE = N = L
LDA1.2. bis LDA3.2. LDC2.2. bis LDC3.2.	L1 L2 L3 PEN PEN	L1 L2 L3 N PE
240 mm x 180 mm	PEN = ½ L	PE = N = ½ L
LDA4.1. bis LDA8.1. LDC6.1. bis LDC8.1.	E L11L2;L31 L32L22L12	L1 ₁ L2 ₂ L3 ₁ L3 ₂ L2 ₂ L1 ₂ a
240 mm x 180 mm	PEN = L	PE = ½ L, N = L
LDA4.2. bis LDA8.2. LDC6.2. bis LDC8.2.	E PEN PEN PEN	E L1,122,131 L32,122,112 a B

Aufbau des Schienenpakets

Im folgenden Bild wird beispielhaft ein 7-schieniges System als Schnittzeichnung dargestellt. Dabei ist die Lage der einzelnen Phasen und des Schutzleiters PEN aufgezeichnet. Außerdem ist das Profil des Gehäuses zu erkennen.


Bild 4-2 Schnittzeichnung eines 7-schienigen Systems

Stromschienensysteme LD sind sowohl mit Leitermaterial aus Aluminium (LDA....) als auch aus Kupfer (LDC....) erhältlich. Durch eine spezielle Oberflächenbehandlung des Leiters können Schienenkästen mit unterschiedlichen Leitermaterialien miteinander kombiniert werden. Bei der Aluminiumschiene wird zusätzlich zu der Zinnauflage eine Nickelschicht aufgetragen.

- 1 Aluminiumschiene
- ② Nickelschicht, Zinnauflage
- 3 Hochwärmebeständige Isolierstoffbeschichtung

Bild 4-3 Stromschienensysteme LDA mit Leitermaterial aus Aluminium

- 1 Kupferschiene
- 2 Zinnauflage
- 3 Hochwärmebeständige Isolierstoffbeschichtung

Bild 4-4 Stromschienensysteme LDC mit Leitermaterial aus Kupfer

Um die hohe Kurzschlussfestigkeit zu garantieren und die Schienen auf Abstand zu halten, sind Schienenstützer in einem Abstand von 200 mm eingebaut (vgl. Skizze):

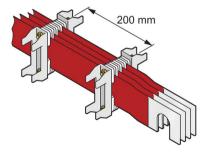
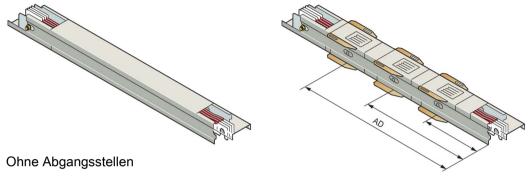



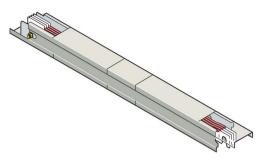
Bild 4-5 Eingebaute Schienenstützer

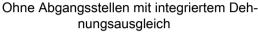
4.2.4 Gerade Schienenkästen

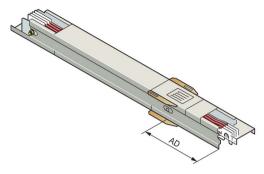
Gerade Schienenkästen werden zum Transport elektrischer Energie und zur Versorgung von Verbrauchern genutzt.

Gerade Schienenkästen für horizontale Installation

Mit Abgangsstellen


	Länge	Тур
Standardlängen	1,6 m	LD1,6
	2,4 m	LD2,4
	3,2 m	LD3,2
Wahllängen	0,50 0,89 m	LD1W*
	0,90 1,59 m	LD2W*
	1,61 2,39 m	LD3W*
	2,41 3,19 m	LD4W*
Gerader Schienenkasten als Dehnungs- ausgleich	1,2 m	LDD
Standardlängen mit 1, 2 oder 3 Abgangsstellen	3,2 m	LDK-3, 2-3AD 3 Abgangsstellen
	3,2 m	LDK-3,2-2AD 2 Abgangsstellen
	3,2 m	LDK-3,2-AD
		1 Abgangsstelle
Wahllängen	2,20 2,40 m	LDK-2W*-2AD
mit 2 Abgangsstellen	2,41 3,20 m	LDK-3W*-2AD
Wahllängen	1,20 1,60 m	LDK-1W*-AD
mit 1 Abgangsstelle	1,61 2,40 m	LDK-2W*-AD
	2,41 3,20 m	LDK-3W*-AD


W = Wahllänge


^{* =} Maßangabe in m

AD = Abgangsstelle

Gerade Schienenkästen für vertikale Installation

Mit 1 Abgangsstelle und integriertem Dehnungsausgleich

	Länge	Тур
Standardlänge	2,4 m	LDV-2,4
	3,2 m	LDV-3,2
Wahllängen	2,29 2,80 m	LDV-1W*
	2,81 3,00 m	LDV-2W*
	3,01 3,19 m	LDV-3W*
Standardlängen	2,4 m	LDK-V-2,4-AD
mit 1 Abgangsstelle	3,2 m	LDK-V-3,2-AD
Wahllängen	2,29 2,80 m	LDK-V-1W*-AD
mit 1 Abgangsstelle	2,81 3,00 m	LDK-V-2W*-AD
	3,01 3,19 m	LDK-V-3W*-AD

W = Wahllänge

* = Maßangabe in m

AD = Abgangsstelle

Hinweis

Dehnungsausgleich

Bedingt durch die Verlustwärme bei Nennbelastung dehnen sich die Stromschienen im Schienenkasten aus. Um diese Längenausdehnung zu kompensieren, müssen Sie bei der horizontalen Installation in definierten Abständen einen Dehnungsausgleich einplanen.

Bei Schienenkästen für die vertikale Installation ist der Dehnungsausgleich integriert.

Beachten Sie bei der Planung von horizontalen Schienenverläufen Folgendes:

- Zwischen zwei Richtungsänderungen darf ein gerader Strang ohne Dehnungsausgleich max. 10 m lang sein.
- Zwischen einer Richtungsänderung und dem Endflansch darf ein gerader Strang max.
 25 m lang sein. Bei größeren Stranglängen müssen entsprechend Dehnungsausgleichskästen eingeplant werden.

4.2 Systemkomponenten

Abgangsstellen

Abgangsstellen sind nur auf geraden Schienenkästen möglich. Diese können als Standardlänge oder als Wahllänge realisiert werden. Möglich sind:

- Abgangsstellen OBEN: ...-AD
- Abgangsstellen UNTEN: ...-ADU
- Abgangsstellen OBEN und UNTEN: ...-ADO+U

Bei einem Schienenkasten mit einer Abgangsstelle OBEN und UNTEN kann immer nur ein Abgangskasten gesteckt werden. Der Abstand der Abgangsstellen zueinander beträgt 1 m.

Der benötigte Typ wird bei der Projektierung ermittelt und je nach Schieneneinbaulage bestimmt.

Bei wählbaren Schienenkästen mit Abgangsstellen muss der Abstand vom jeweiligen Schienenende zur Abgangsstelle mindestens 0,6 m sein.

Auf beiden Seiten der Abgangsstelle sind Kodierwinkel angebracht. Diese garantieren die Unverwechselbarkeit und die phasenrichtige Montage der Abgangskästen.

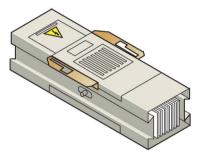
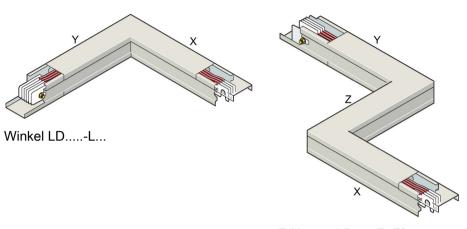
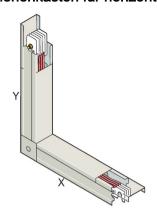



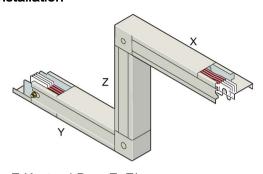
Bild 4-6 Schienenkasten mit Abgangsstelle

4.2.5 Richtungsänderungen

Gewinkelte Schienenkästen für horizontale Installation

Z-Kasten LD.....-Z.-Z*

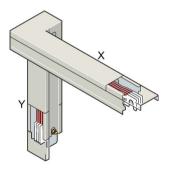

Länge	Тур	
X = 0,5 1,24 m	LDL	
Y = 0,5 1,24 m		


Länge		System	Schienenkasten	Тур
X/Y = 0.5 m	Z = 0,36 0,99 m	LD.1 LD.3	180 x 180 mm	LDZZ*
	Z = 0,48 0,99 m	LD.4 LD.8	240 x 180 mm	_

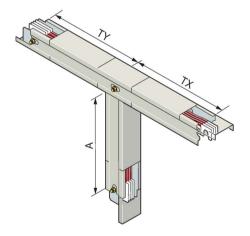
^{* =} Wahllänge in mm

4.2 Systemkomponenten

Gewinkelte Schienenkästen für horizontale und vertikale Installation



Z-Kasten LD.....-Z.-Z*


Winkel LD.....-L.

Länge	Тур	
X = 0,5 1,24 m	LDL	
Y = 0,5 1,24 m		
X = 0,5 1,24 m	LDZZ*	_
Y = 0,5 1,24 m		
Z = 0,36 0,99 m		

^{* =} Wahllänge in mm

Knie versetzt LD.....-L.

T-Kasten LD.....-T.

Länge	Тур	
X = 0,5 1,24 m	LDL	
Y = 0,5 1,24 m		
TX = 0,58 m	LDT.	
TY = 0,62 m		
A = 0,5 m		

4.2.6 Verteileranbindung für Siemens-Energieverteiler

Anbindung an das Siemens-Energieverteilersystem SIVACON als bauartgeprüfte Niederspannungs-Schaltgerätekombination bauartgeprüft nach IEC / EN 61439-1 und -6

Der Schienenverteiler kann sowohl von oben als auch von unten an das Verteilersystem angebunden werden. Die Anbindung zwischen Schienenverteiler und den Verteilersystemen SIVACON S8 garantiert eine hohe Kurzschlussfestigkeit, die durch Typprüfung sichergestellt ist und enorme Sicherheit für die Energieübertragung bietet.

Bemessungsströme

Für Bemessungsströme bis 5000 A werden durchgehend bauartgeprüfte Bausteine angeboten.

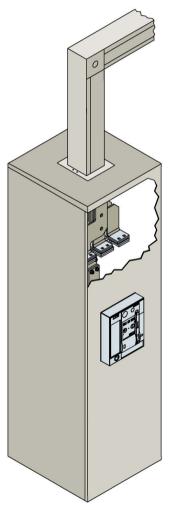


Bild 4-7 Verteileranbindung

4.2.7 Anschluss-Stück für Fremdverteiler

Wenn Sie das Stromschienensystem an einen Verteiler anbinden wollen, der nicht von Siemens hergestellt wird, besteht die Möglichkeit, diese Verbindung mit einem Fremdverteiler-Anschluss-Stück LD. - FA1 auszuführen. Das Anschluss-Stück wird in den Verteiler eingebaut und stellt die Schnittstelle zur Verkupferung der Verteilung dar.

Bemessungsströme

- Die max. Bemessungsströme sind im Kapitel "Technische Daten (Seite 128)" aufgeführt.
- Die Grenztemperatur der isolierstoffbeschichteten Schienen beträgt 135 °C.
- Die möglichen Anschlussquerschnitte für die Verkupferung finden Sie im Kapitel "Technische Daten (Seite 128)".

Einbau des Anschluss-Stücks

Die Verkupferung des Anschluss-Stücks im Verteiler muss vom Verteilerhersteller oder nach seinen Angaben ausgeführt werden. Der Verteilerhersteller muss sicherstellen, dass die notwendige Kurzschlussfestigkeit erreicht wird und die zulässige Grenztemperatur des Fremdverteiler-Anschluss-Stücks nicht überschritten wird.

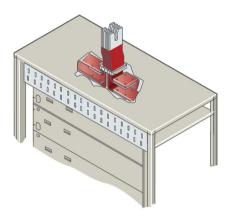
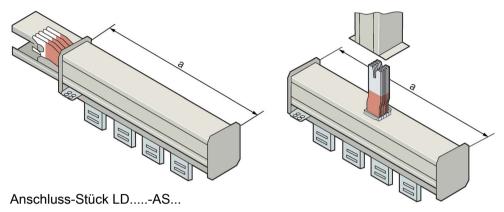



Bild 4-8 Fremdverteiler-Anschluss-Stück

4.2.8 Anschluss-Stück für Transformatoren und Verteiler

Zur Anbindung unterschiedlicher Transformatoren an ein Stromschienensystem stehen vier verschiedene Transformatoranschluss-Stücke LD.....-AS. für alle Bemessungsstrom-Bereiche zur Verfügung:

Anschluss-Stück LD....-AS.-T

Typ Anschluss-Stück	Wählbarer Phasenabstand	Mögliche Phasenfolgen
LDAS1(-T)	150 180 mm a = 725 mm	L1, L2, L3, PEN PEN, L3, L2, L1
LDAS2(-T)	190 380 mm a = 1085 mm	L1, L2, L3, PEN PEN, L3, L2, L1
LDAS3(-T)	450 750 mm a = 1430 mm	Lx, PEN, L2, Lx Lx, L2, PEN, Lx Lx = L1 oder L3
LDAS4(-T)	450 750 mm a = 1930 mm	L1, L2, L3, PEN PEN, L3, L2, L1

Für den Abstand zwischen den Anschlussfahnen des Anschluss-Stücks empfehlen wir max. 200 mm.

Das universelle Anschluss-Stück kann auch zur Verbindung von Verteilern eingesetzt werden.

4.2.9 Kabeleinspeisung

Wenn eine Einspeisung des Schienensystems über Kabel erforderlich ist, verwenden Sie die Kabeleinspeisung LDA(C)....-KE.

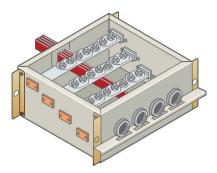


Bild 4-9 Kabeleinspeisung

Die Kabeleinspeisung ist für folgende Bemessungsströme ausgelegt:

- 1100 bis 2600 A (bei IP34)
- 900 bis 2000 A (bei IP54).

Gehäusegrößen

Abhängig vom System können drei Größen gewählt werden:

Größe 1: LDA1...-KE bis LDA2...-KE
Größe 2: LDA3...-KE und LDA4...-KE

LDC2...-KE

Größe 3: LDA5...-KE.

LDC3...-KE.

Die maximalen Abmessungen betragen 920 mm x 639 mm x 490 mm (B x H x T).

Die Schutzart beträgt wahlweise IP34 oder IP54.

Sie können Einleiter- oder Mehrleiterkabel anschließen. Dabei können Sie Querschnitte bis 300 mm² (Bolzenanschluss) direkt an die Anschluss-Schienen der Kabeleinspeisung anschließen.

In der Standardausführung werden die Blechflanschplatten und die Kabeltüllen mitgeliefert. Bei Einleiterkabeln wird werkseitig eine ungebohrte Aluminiumplatte zur Kabeleinführung beigestellt.

4.2.10 Kuppelkästen

Kuppelkästen werden eingesetzt, wenn es notwendig ist, Anlagenteile oder Bereiche der Energieversorgung abzuschalten oder entsprechend zuzuschalten. Um das Schienensystem an die tatsächliche Last anzupassen, kann der Querschnitt der Stromschiene reduziert werden und mit einem Kuppelkasten gegen Kurzschluss und Überlast geschützt werden.

Kuppelkästen können je nach Aufgabe mit Lasttrennern oder mit Leistungsschaltern bestückt werden. Optional sind die Kuppelkästen auch in störlichtbogensicherer Ausführung erhältlich.

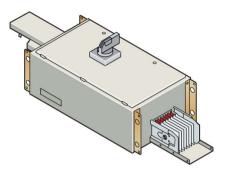


Bild 4-10 Kuppelkästen

Bemessungsströme

Je nach Anwendung stehen den Systemen angepasste Bemessungsströme von 1100 bis 3000 A zur Verfügung.

Bedienung

Die Kuppelkästen können mittels Handgriff oder auch mit einem Fernantrieb bedient werden.

Abmessungen

Das Einbaumaß im Schienenstrang beträgt 1600 mm.

Die Abmessungen sind von Gerätetyp sowie Stromgröße abhängig und projektbezogen anzufragen.

4.2.11 Abgangskästen

4.2.11.1 Abgangskästen

Energieabgänge unterschiedlicher Stromstärke

Je nach Anwendung, Größe und Art der Verbraucher werden Energieabgänge unterschiedlicher Stromstärke benötigt. Realisiert werden diese Abgriffe mit Abgangskästen mit Sicherungslasttrennschalter oder mit Leistungsschaltern.

Grundsätzlich werden die Abgangskästen in zwei Ausführungen gefertigt:

- Mit Sicherungslasttrennschalter
- Mit Leistungsschalter

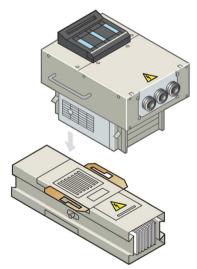


Bild 4-11 Abgangskasten mit Sicherungslasttrennschalter und Schienenkasten mit Abgangsstelle

Voreilender PE bzw. PEN

Der Stromabgriff im Abgangskasten ist als ein beim Aufsetzen voreilender bzw. beim Abnehmen nacheilender PE/PEN-Leiterkontakt ausgeführt.

Bei einem 4-Leiter-System wird dies durch eine längere PEN-Schiene am Kontaktapparat sichergestellt. Bei einem 5-Leiter-System wird die PE-Verbindung über Schleifkontakte an den Kodierwinkeln hergestellt.

Verdrehschutz und Unverwechselbarkeit

Die Kodierwinkel am Abgangskasten und an der Abgangsstelle des Schienenkastens (Schlüssel-Schloss-Prinzip) dienen

- der Unverwechselbarkeit und richtigen Zuordnung von 4- oder 5-poligen Abgangskästen zu den dazugehörigen Systemen LD
- dem Verdrehschutz gegen falsches Aufsetzen der Abgangskästen auf die Abgangsstelle

4.2.11.2 Abgangskästen mit Sicherungslasttrennschalter

Bemessungsströme

Zur Auswahl stehen Abgangskästen 125 A, 2 x 125 A, 250 A, 400 A und 630 A.

Je nach Stromstärke kommen NH-Sicherungen der Größe NH 00, NH 1, NH 2 oder NH 3 zum Einsatz. Durch die kompakte Bauform ist nur eine Gehäusegröße für alle Bemessungsstrom-Bereiche notwendig.

Bedienung


Die Abgangskästen mit Sicherungslasttrennschalter werden mit der Hand über eine Einschwenkvorrichtung bedient.

Schutzart

Die Standardschutzart beträgt IP30. Optional ist auch die Schutzart IP54 möglich.

Schutzart IP30

Schutzart IP54

Kabelraum / Kabeleinführung

Ein Bolzenanschluss ermöglicht den Anschluss von Kabeln mit Anschlussquerschnitten bis 2 x 240 mm². In der Standardversion ist die Kabeleinführung stirnseitig angebracht. Der Anbau eines Kabelraums ermöglicht die seitliche Kabeleinführung. Die Kabel werden durch eine integrierte Kabelabfangschiene im Abgangskasten abgefangen (Bügelschellen bauseits). Die geteilte Flanschplatte ermöglicht ein einfaches Einlegen der Kabel.

Öffnen des Abgangskastens

Öffnen Sie den Deckel des Anschlussraums erst, nachdem Sie den Griff des Sicherungslasttrennschalters und damit die Sicherungspatronen entfernt haben. Damit ist der Kabelanschlussraum bei geöffnetem Deckel zwangsläufig spannungsfrei. Der Bereich des Kontaktapparats im vorderen Teil des Abgangskastens ist fingersicher ausgeführt.

Typenbezeichnung

Die Typenbezeichnung der Abgangskästen mit NH-Sicherungslasttrennschalter lautet LD-.AK/3ST...

4.2.11.3 Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter

Bemessungsströme

Zur Auswahl stehen Abgangskästen für 250 A, 400 A und 540 A für den Einsatz von NH-Sicherungen.

Bedienung

Die NH-Sicherungseinsätze der Größen NH2 (250 A) und NH 3 (400 A und 540 A) werden über die Bedienung am Türantrieb ein- bzw. ausgeschaltet.

Schutzart

Die Standardschutzart ist IP54.

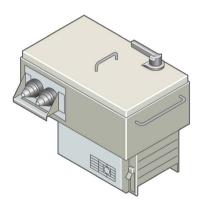


Bild 4-12 Schutzart IP54

Kabelraum / Kabeleinführung

Ein Bolzenanschluss ermöglicht einen Anschluss von Kabel mit Anschlussquerschnitten bis zu 2 x 4 x 240 mm². Die Kabeleinführung kann an beiden Seiten angebracht werden. Bei einer Einleiterkabeleinführung wird eine Aluminiumplatte, bestückt mit metrischen Verschraubungen, mitgeliefert.

Störlichtbogensicherheit

Die Abgangskästen sind störlichtbogensicher. Der Nachweis wurde durch eine Störlichtbogenprüfung nach IEC / TR 61641 erbracht und wird durch einen Prüfbericht bestätigt.

Typenbezeichnung

Die Typenbezeichnung für die Abgangskästen mit NH-Lasttrennschalter lautet: LD-K-.AK./FSAM...

4.2.11.4 Abgangskästen mit Leistungsschaltern

Bei den Abgangskästen mit Leistungsschalter können Sie das Schaltvermögen, die Anzahl der aktiv geschalteten Pole, die Art der Bedienung und die Möglichkeiten der Meldungen wählen:

- Bemessungsströme von 100 A bis 1250 A.
- 3- oder 4-polige Ausführungen.
- Schaltvermögen: normal, stark oder hoch (siehe "Abgangskästen mit Leistungsschalter (Seite 147)").

Leistungsschalter mit Handantrieb

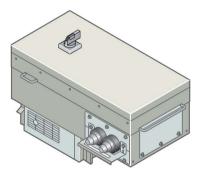


Bild 4-13 Leistungsschalter mit Handantrieb

In dieser Ausführung beinhaltet der Abgangskasten einen Leistungsschalter, der von außen mittels eines Handgriffs betätigt werden kann.

Schutzart

Die Schutzart der Abgangskästen ist IP54.

Öffnen des Abgangskastens

Der Kontaktraum und die Verkupferung vom Kontaktapparat zum Leistungsschalter sind fingersicher gekapselt. Der Deckel kann nur dann geöffnet werden, wenn der Schalter ausgeschaltet ist. Somit ist eine zwangsläufige Lastfreiheit bei geöffnetem Deckel sichergestellt.

Kabelanschluss

Verbraucherseitig werden die abgehenden Leitungen direkt auf den Leistungsschalter aufgelegt. Der PE- bzw. PEN-Leiter wird entsprechend des Querschnitts an einem Bolzenanschluss befestigt. Die Einführung von Einleiter- oder Mehrleiterkabeln ist von der Seite oder stirnseitig möglich. Die geteilte Flanschplatte ermöglicht ein einfaches Einlegen der Kabel.

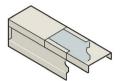
4.2 Systemkomponenten

Leistungsschalter mit Fernantrieb

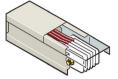
Bei dieser Ausführung ist zusätzlich zum Leistungsschalter ein Fernantrieb eingebaut.

Außerdem können Sie je nach Anwendung zwischen einem Unterspannungs- und einem Arbeitsstromauslöser wählen. Die Betätigungsspannung des Motorantriebs ist extern sicherzustellen (AC 220 V bis AC 250 V). Die Anschlüsse für den Fernantrieb sind für Klemmenanschluss vorgesehen.

Der Einspeiseraum und die Verkupferung vom Kontaktapparat zum Leistungsschalter sind fingersicher gekapselt. Verbraucherseitig wird wie bei der Variante mit Handantrieb angeschlossen.


Typenbezeichnung

Die Typenbezeichnung der Abgangskästen mit Leistungsschaltern lautet: LD-.AK./LS.


4.2.12 Zusatzausrüstung

Endflansche

Am Ende eines Schienenstrangs ist je nach Ausführung des Schienenkastens ein Endflansch mit Haken oder mit Bolzen einzubauen.

Endflansch mit Haken

Endflansch mit Bolzen

Aufhängebügel

Zur Befestigung des Schienenverteilers in der horizontalen Installation wird der Aufhängebügel LD-B1/B2 eingesetzt:

- B1 für die Gehäuseabmessung 180 mm x 180 mm
- B2 für die Gehäuseabmessung 240 mm x 180 mm.

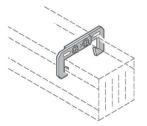


Bild 4-14 Aufhängebügel

Befestigungsbügel

Wenn Sie das System LD vertikal installieren, müssen Sie den Befestigungsbügel LD-BV einsetzten. Die Befestigungsabstände finden Sie in dem Kapitel "Maßzeichnungen (Seite 150)").

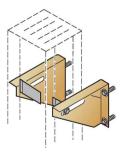


Bild 4-15 Befestigungsbügel

4.3 Technische Daten

4.3.1 LD allgemein

	LD
Normen und Bestimmungen	IEC / EN 61439-1 und -6
Klimafestigkeit	
Feuchte Wärme, konstant, nach IEC 60068-2-78	40 °C / 93 % RH / 56d
Feuchte Wärme, zyklisch, nach IEC 60068-2-30	56 x (25 40 °C / 3 h; 40 °C / 9 h; 40 25 °C / 36 h; 25 °C / 6 h) 95 % RH
Kälte nach IEC 60068-2-1	45 °C, 16 h
Temperaturwechsel nach IEC 60068-2-14	45 55 °C; 5 Zyklen (1 °C / min); Haltezeit min. 30 min
Salznebelprüfung nach IEC 60068-2-52	Schärfegrad 3
Eisbildung nach IEC 60068-2-61	Zusammengesetzte Prüfung aus Feuchte Wärme, zyklisch + Kälte
Umgebungstemperatur min. / max. / 24-h-Mittel	°C –5 / +40 / +35
Umweltklassen nach IEC 60721	
wurden durch Prüfungen aus der Klimafestigkeit abgeleite	t
Klimatisch	1K5 (Lagerung) = 3K7L (Betrieb ohne Sonneneinstrahlung); 2K2 (Transport)
Chemisch aktiv	Salznebel, weitere Schadstoffe optional,
	1C2 (Lagerung) = 3C2 (Betrieb) = 2C2 (Transport)
Biologisch	Wird durch IP-Schutzarten und Verpackungen abgedeckt.
	1B2 (Lagerung) = 3B2 (Betrieb) = 2B2 (Transport)
Mechanisch aktiv	Wird durch Schutzarten IP und Verpackungsart abgedeckt.
	1S2 (Lagerung) = 3S2 (Betrieb); 2S2 (Transport)
Systemabhängige Daten	
Schutzart	IP31 belüftet (bei Schienenlage horizontal flach) IP34 belüftet (bei Schienenlage horizontal hochkant) IP54 geschlossen
Standardeinbaulage	Lage der Stromschienen hochkant im Schienenkasten bei horizontaler Verlegung
Drehmoment für Einbolzenklemme	Nm 80
Oberflächenbehandlung der Stromschienen	Über die Gesamtlänge isolierstoffbeschichtet, vernickelt und verzinnt: LDA; verzinnt: LDC
Werkstoffschienenkästen, Abgangskästen	Stahlblech pulverlackiert
Farbe Schienenkästen, Abgangskästen	RAL 7035 (lichtgrau)
Abmessungen	Siehe "Maßzeichnungen (Seite 150)"
Gewicht	Siehe Kapitel "Gewichte (Seite 149)"
Bemessungsisolationsspannung nach AC / DC DIN EN 61439-1	V 1000

			LD
Bemessungsbetriebsspannung (Energie	transport)		
bei Überspannungskategorie III/3	AC	V	1000
bei Überspannungskategorie IV/3	AC	V	690
Bemessungsbetriebsspannung (Energie	verteilung)		
bei Überspannungskategorie III/3	AC	V	400 (690)1)
Bemessungsfrequenz		Hz	50 / 602)

¹⁾ Abgangskästen auf Anfrage

²⁾ Gemäß EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

4.3.2 Schienenkästen LDA.4.. (4-polig, Aluminium)

Systemabhängige	e Daten			LDA142.	LDA242.	LDA342.	LDA441.	LDA442.	LDA541.	LDA542.
				PEN=L	PEN=L	PEN=L	PEN=½L	PEN=L	PEN=½L	PEN=L
Bemessungsstror	n / _{nA} 1)									
horizontal /	IP34	ľηΑ	Α	1100	1250	1600	2000	2000	2500	2500
hochkant ²⁾	IP54	ľηΑ	Α	900	1000	1200	1500	1500	1800	1800
vertikal	IP34	ľηΑ	Α	950	1100	1250	1700	1700	2100	2100
	IP54	ľηΑ	Α	900	1000	1200	1500	1500	1800	1800
horizontal / flach	IP31 / IP54	ľηΑ	Α	700	750	1000	1200	1200	1700	1700
Impedanzbelag										
der Strombah- nen bei 50 Hz und + 20 °C	Wirkwider- stands- belag	R ₂₀	mΩ/m	0,061	0,047	0,047	0,029	0,031	0,032	0,034
Schienentempe- ratur	Blindwider- stands- belag	X ₂₀	mΩ/m	0,052	0,043	0,043	0,03	0,031	0,024	0,029
	Impedanz- belag	Z ₂₀	mΩ/m	0,079	0,064	0,064	0,041	0,043	0,040	0,044
der Strombah- nen bei 50 Hz und Enderwär-	Wirkwider- stands- belag	R ₁	mΩ/m	0,072	0,054	0,057	0,035	0,036	0,036	0,034
mung der Schienen	Blindwider- stands- belag	X ₁	mΩ/m	0,051	0,043	0,043	0,028	0,031	0,021	0,027
	Impedanz- belag	Z ₁	mΩ/m	0,088	0,069	0,072	0,044	0,047	0,042	0,044
der Strombah- nen für 4-pol. Systeme im	Wirkwider- stands- belag	RF	mΩ/m	0,144	0,106	0,106	0,085	0,083	0,079	0,062
Fehlerfall nach EN 61439-6	Blindwider- stands- belag	XF	mΩ/m	0,167	0,178	0,178	0,113	0,117	0,094	0,104
	Impedanz- belag	Z _F	mΩ/m	0,218	0,207	0,207	0,147	0,144	0,123	0,121
Nullimpedanz										
für 4-pol. Sys-	-	R_0	mΩ/m	0,282	0,217	0,217	0,168	0,171	0,193	0,126
teme nach DIN EN 60909-0 /	-	X_0	mΩ/m	0,233	0,200	0,200	0,178	0,175	0,179	0,163
VDE 0102	-	Z ₀	mΩ/m	0,367	0,295	0,295	0,249	0,244	0,264	0,206

Cyctomobbängig	Doton			LDA442	L DA242	I DA242	1.00444	LDA442.	104544	1 DAE40
Systemabhängige	e Daten			LDA142.	LDA242.	LDA342.	LDA441.		LDA541.	LDA542.
				PEN=L	PEN=L	PEN=L	PEN=1/2L	PEN=L	PEN=1⁄2L	PEN=L
Kurzschlussfestigkeit										
Bemessungs- kurzzeitstrom- festigkeit	Effektiv- wert t = 0,1 s	I cw	kA	55	70	80	110	110	125	125
	Effektiv- wert t = 1 s	I _{cw}	kA	40	55	58	80	80	110	110
Bemessungs- stoßstrom- festigkeit	Scheitel- wert	/ pk	kA	121	154	176	242	242	275	275
Leitermaterial				Aluminiun	n					
Anzahl der Schie	nen			4	4	4	7	8	7	8
Leiterquerschnitt	L1, L2, L3	Α	mm²	530	706	706	1060	1060	1232	1232
	PEN	Α	mm²	530	706	706	530	1060	616	1232
Brandlast										
Schienenkasten ohne Abgangsstelle KWh/r		KWh/m	7,08	7,09	7,09	10,87	11,99	10,87	11,99	
Pro Abgangsstelle	е		KWh	8,32	8,32	8,32	12,04	12,96	12,04	12,96
Max. Befestigung übliche mechanis			m	6	6	6	5	5	5	5

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

²⁾ Einschließlich Höhenversprünge ≤ 1,3 m

4.3 Technische Daten

Systemabhängige Daten				LDA641.	LDA642.	LDA741.	LDA742.	LDA841.	LDA842.
				PEN=½L	PEN=L	PEN=½L	PEN=L	PEN=½L	PEN=L
Bemessungsstrom /nA1)									
horizontal / hochkant2)	IP34	/ nA	Α	3000	3000	3700	3700	4000	4000
	IP54	/ nA	Α	2000	2000	2400	2400	2700	2700
vertikal	IP34	/ nA	Α	2300	2300	2800	2800	3400	3400
	IP54	/ nA	Α	2000	2000	2400	2400	2700	2700
horizontal / flach	IP31 / IP54	/ nA	Α	1800	1800	2200	2200	2350	2350
Impedanzbelag									
der Strombahnen bei 50 Hz und + 20 °C Schienen- temperatur	Wirkwider- standsbe- lag	R ₂₀	mΩ/m	0,023	0,024	0,017	0,016	0,015	0,013
	Blindwider- standsbe- lag	X ₂₀	mΩ/m	0,023	0,029	0,019	0,022	0,017	0,019
	Impedanz- belag	Z ₂₀	mΩ/m	0,033	0,037	0,026	0,027	0,023	0,023
der Strombahnen bei 50 Hz und Enderwärmung der Schienen	Wirkwider- standsbe- lag	R ₁	mΩ/m	0,030	0,029	0,021	0,020	0,018	0,016
	Blindwider- standsbe- lag	X ₁	mΩ/m	0,024	0,029	0,019	0,022	0,017	0,019
	Impedanz- belag	Z ₁	mΩ/m	0,038	0,041	0,029	0,030	0,025	0,025
der Strombahnen für 4-pol. Systeme im Fehlerfall nach EN 61439-6	Wirkwider- standsbe- lag	RF	mΩ/m	0,075	0,056	0,055	0,041	0,049	0,038
	Blindwider- standsbe- lag	XF	mΩ/m	0,109	0,119	0,083	0,093	0,086	0,080
	Impedanz- belag	Z _F	mΩ/m	0,132	0,131	0,099	0,101	0,099	0,088
Nullimpedanz									
für 4-pol. Systeme nach	-	R ₀	mΩ/m	0,180	0,120	0,126	0,090	0,110	0,075
DIN EN 60909-0 / VDE 0102	_	X_0	mΩ/m	0,154	0,153	0,097	0,119	0,086	0,087
VDC 0102	-	Z_0	mΩ/m	0,237	0,194	0,159	0,149	0,140	0,115

Systemabhängige Daten				LDA641.	LDA642.	LDA741.	LDA742.	LDA841.	LDA842.
				PEN=½L	PEN=L	PEN=½L	PEN=L	PEN=½L	PEN=L
Kurzschlussfestigkeit									
Bemessungskurzzeitstrom- festigkeit	Effektiv- wert t = 0,1 s	/ cw	kA	130	130	130	130	130	130
	Effektiv- wert t = 1 s	/ _{cw}	kA	116	116	116	116	116	116
Bemessungsstoßstrom- festigkeit	Scheitel- wert	/ pk	kA	286	286	286	286	286	286
Leitermaterial				Aluminiun	n				
Anzahl der Schienen				7	8	7	8	7	8
Leiterquerschnitt	L1, L2, L3	Α	mm²	1412	1412	2044	2044	2464	2464
	PEN	Α	mm²	706	1412	1022	2044	1232	2464
Brandlast									
			KWh/m	10,87	11,99	10,87	11,99	10,87	11,99
			KWh	12,04	12,96	12,04	12,96	12,04	12,96
Max. Befestigungsabstände nische Belastung	für übliche m	necha-	m	5	5	5	5	5	5

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

²⁾ Einschließlich Höhenversprünge ≤ 1,3 m

4.3.3 Schienenkästen LDA.6.. (5-polig, Aluminium)

Systemabhängige	e Daten			LDA162.	LDA262.	LDA362.	LDA461.	LDA462.	LDA561.	LDA562.
				N=L	N=L	N=L	N=1/2L	N=L	N=1⁄₂L	N=L
Bemessungsstro	n /nA ¹⁾									
horizontal /	IP34	lηΑ	Α	1100	1250	1600	2000	2000	2500	2500
hochkant ²⁾	IP54	/ nA	Α	900	1000	1200	1500	1500	1800	1800
vertikal	IP34	lηΑ	Α	950	1100	1250	1700	1700	2100	2100
	IP54	lηA	Α	900	1000	1200	1500	1500	1800	1800
horizontal / flach	IP31 / IP54	lηA	Α	700	750	1000	1200	1200	1700	1700
Impedanzbelag										
der Strombah- nen bei 50 Hz und + 20 °C	Wirkwider- stands- belag	R ₂₀	mΩ/m	0,061	0,048	0,048	0,030	0,030	0,027	0,029
Schienentempe- ratur	Blindwider- stands- belag	X ₂₀	mΩ/m	0,052	0,043	0,043	0,031	0,031	0,026	0,033
	Impedanz- belag	Z ₂₀	mΩ/m	0,079	0,064	0,064	0,043	0,043	0,038	0,044
der Strombah- nen bei 50 Hz und Enderwär-	Wirkwider- stands- belag	R₁	mΩ/m	0,072	0,054	0,059	0,036	0,036	0,032	0,036
mung der Schienen	Blindwider- stands- belag	X ₁	mΩ/m	0,051	0,043	0,042	0,031	0,031	0,026	0,031
	Impedanz- belag	Z ₁	mΩ/m	0,088	0,069	0,072	0,047	0,047	0,042	0,047
der Strombah- nen für 5-pol. Systeme (PE)	Wirkwider- stands- belag	RF	mΩ/m	0,162	0,108	0,108	0,109	0,109	0,101	0,089
im Fehlerfall nach EN 61439-6	Blindwider- stands- belag	XF	mΩ/m	0,231	0,201	0,201	0,126	0,128	0,133	0,133
	Impedanz- belag	Z _F	mΩ/m	0,283	0,228	0,228	0,168	0,168	0,167	0,160
der Strombah- nen für 5-pol. Systeme (N) im	Wirkwider- stands- belag	R _F	mΩ/m	0,147	0,108	0,108	0,112	0,067	0,092	0,067
Fehlerfall nach EN 61439-6	Blindwider- stands- belag	XF	mΩ/m	0,197	0,173	0,173	0,108	0,109	0,102	0,113
	Impedanz- belag	Z _F	mΩ/m	0,246	0,204	0,204	0,155	0,128	0,137	0,131

Systemabhängige	e Daten			LDA162.	LDA262.	LDA362.	LDA461.	LDA462.	LDA561.	LDA562.
				N=L	N=L	N=L	N=1⁄2L	N=L	N=1/2L	N=L
Nullimpedanz										
für 5-pol. Sys-	-	R ₀	mΩ/m	0,310	0,240	0,240	0,250	0,250	0,238	0,264
teme (PE) nach DIN EN 60909-0	-	X_0	mΩ/m	0,415	0,200	0,200	0,235	0,235	0,211	0,272
/ VDE 0102	-	Z_0	$m\Omega/m$	0,518	0,295	0,295	0,343	0,343	0,318	0,379
für 5-pol. Sys-	-	R ₀	mΩ/m	0,293	0,231	0,231	0,267	0,146	0,195	0,136
teme (N) nach DIN EN 60909-0	-	X_0	mΩ/m	0,260	0,219	0,219	0,144	0,144	0,135	0,161
/ VDE 0102	-	Z_0	mΩ/m	0,392	0,319	0,319	0,303	0,205	0,237	0,211
Kurzschlussfestig	keit									
Bemessungs- kurzzeit- stromfestigkeit	Effektiv- wert t = 0,1 s	I _{cw}	kA	55	70	80	110	110	125	125
	Effektiv- wert t = s	/ _{cw}	kA	40	55	58	80	80	110	110
Bemessungs- stoßstrom- festigkeit	Scheitel- wert	/ pk	kA	121	154	176	242	242	275	275
Bemessungs- kurzzeit- stromfestigkeit	Effektiv- wert t = 0,1 s	/ cw	kA	33	42	48	66	66	75	75
des 5. Leiters	Effektiv- wert t = 1 s	/ _{cw}	kA	24	33	35	48	48	66	66
Leitermaterial				Aluminiur	n					
Anzahl der Schier	nen			5	5	5	8	9	8	9
Leiterquerschnitt	L1, L2, L3	Α	mm²	530	706	706	1060	1060	1232	1232
	N	Α	mm²	530	706	706	530	1060	616	1232
	PE	Α	mm²	530	706	706	530	530	616	616
Brandlast										
Schienenkasten ohne Abgangs-stelle	-	-	KWh/m	7,28	7,29	7,29	10,87	11,99	10,87	11,99
pro Abgangs- stelle	-	-	KWh	8,32	8,32	8,32	12,04	12,96	12,04	12,96
Max. Befesti- gungsabstände für übliche me- chanische Be- lastung	-	-	m	6	6	6	5	5	5	5

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

 $^{^{2)}}$ Einschließlich Höhenversprünge $\leq 1.3 \text{ m}$

4.3 Technische Daten

Systemabhängige Daten	1			LDA661.	LDA662.	LDA761.	LDA762.	LDA861.	LDA862
				N=1/2L	N=L	N=½L	N=L	N=1∕₂L	N=L
Bemessungsstrom InA1)									
horizontal / hochkant2)	IP34	/ nA	Α	3000	3000	3700	3700	4000	4000
	IP54	/ nA	Α	2000	2000	2400	2400	2700	2700
vertikal	IP34	/ nA	Α	2300	2300	2800	2800	3400	3400
	IP54	/ nA	Α	2000	2000	2400	2400	2700	2700
horizontal / flach	IP31 / IP54	/ nA	Α	1800	1800	2200	2200	2350	2350
Impedanzbelag									
der Strombahnen bei 50 Hz und +20 °C	Wirkwider- standsbelag	R ₂₀	mΩ/m	0,023	0,023	0,017	0,018	0,014	0,015
Schienentemperatur	Blindwider- standsbelag	X ₂₀	mΩ/m	0,024	0,029	0,019	0,025	0,022	0,021
	Impedanz- belag	Z ₂₀	mΩ/m	0,033	0,037	0,026	0,030	0,026	0,026
der Strombahnen bei 50 Hz und Enderwär-	Wirkwider- standsbelag	R ₁	mΩ/m	0,029	0,030	0,020	0,021	0,017	0,018
mung der Schienen	Blindwider- standsbelag	X ₁	mΩ/m	0,024	0,031	0,020	0,025	0,021	0,021
	Impedanz- belag	Z ₁	mΩ/m	0,037	0,043	0,028	0,033	0,027	0,027
der Strombahnen für 5-pol. Systeme (PE) im	Wirkwider- standsbelag	R _F	mΩ/m	0,092	0,084	0,068	0,065	0,055	0,056
Fehlerfall nach EN 61439-6	Blindwider- standsbelag	XF	mΩ/m	0,134	0,133	0,110	0,114	0,102	0,105
	Impedanz- belag	Z _F	mΩ/m	0,163	0,157	0,129	0,131	0,116	0,119
der Strombahnen für 5-pol. Systeme (N) im	Wirkwider- standsbelag	R _F	mΩ/m	0,076	0,057	0,053	0,042	0,049	0,037
Fehlerfall nach EN 61439-6	Blindwider- standsbelag	XF	mΩ/m	0,106	0,113	0,080	0,091	0,084	0,086
	Impedanz- belag	Z _F	mΩ/m	0,130	0,127	0,096	0,100	0,097	0,094
Nullimpedanz									
für 5-pol. Systeme (PE)	-	R₀	mΩ/m	0,217	0,212	0,163	0,166	0,145	0,146
nach DIN EN 60909-0 /	-	X_0	mΩ/m	0,202	0,263	0,175	0,220	0,196	0,196
VDE 0102 -	-	Z_0	mΩ/m	0,297	0,338	0,240	0,275	0,243	0,244
für 5-pol. Systeme (N)	-	R ₀	mΩ/m	0,181	0,122	0,130	0,089	0,115	0,079
	-	X_0	mΩ/m	0,128	0,155	0,102	0,093	0,095	0,100
		Z_0	mΩ/m	0,221	0,198	0,165	0,129	0,149	0,127

Systemabhängige Date	n			LDA661.	LDA662.	LDA761.	LDA762.	LDA861.	LDA862.
				N=1/2L	N=L	N=1/2L	N=L	N=1/2L	N=L
Kurzschlussfestigkeit									
Bemessungskurz- zeitstromfestigkeit	Effektivwert t = 0,1 s	/ cw	kA	130	130	130	130	130	130
	Effektivwert t = 1 s	/ cw	kA	116	116	116	116	116	116
Bemessungs- stoßstromfestigkeit	Scheitelwert	/ pk	kA	286	286	286	286	286	286
Bemessungskurz- zeitstromfestigkeit des	Effektivwert t = 0,1 s	/ cw	kA	78	78	78	78	78	78
5. Leiters	Effektivwert t = 1 s	/ cw	kA	70	70	70	70	70	70
Leitermaterial				Aluminiur	n				
Anzahl der Schienen				8	9	8	9	8	9
Leiterquerschnitt	L1, L2, L3	Α	mm²	1412	1412	2044	2044	2464	2464
	N	Α	mm²	706	1412	1022	2044	1232	2464
	PE	Α	mm²	706	706	1022	1022	1232	1232
Brandlast									
Schienenkasten ohne Abgangsstelle	-	-	KWh/m	10,87	11,99	10,87	11,99	10,87	11,99
pro Abgangsstelle	-	-	KWh	12,04	12,96	12,04	12,96	12,04	12,96
Max. Befestigungsab- stände für übliche me- chanische Belastung	-	-	m	5	5	5	5	5	5

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

²⁾ Einschließlich Höhenversprünge ≤ 1,3 m

4.3.4 Schienenkästen LDC.4.. (4-polig, Kupfer)

Systemabhängige Daten				LDC242.	LDC342.	LDC641.	LDC642.
				PEN=L	PEN=L	PEN=½L	PEN=L
Bemessungsstrom /nA1)							
horizontal / hochkant2)	IP34	/ nA	Α	2000	2600	3400	3400
	IP54	/ nA	Α	1600	2000	2600	2600
vertikal	IP34	/ nA	Α	1650	2100	2700	2700
	IP54	/ nA	Α	1600	2000	2600	2600
horizontal / flach	IP31 / IP54	/ nA	Α	1200	1550	2000	2000
Impedanzbelag							
der Strombahnen bei	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,030	0,026	0,015	0,015
50 Hz und + 20 °C Schie- nentemperatur	Blindwiderstandsbelag	X_{20}	mΩ/m	0,042	0,035	0,026	0,026
Tieriterriperatur	Impedanzbelag	Z_{20}	mΩ/m	0,052	0,043	0,030	0,030
der Strombahnen bei	Wirkwiderstandsbelag	R ₁	mΩ/m	0,037	0,028	0,017	0,018
50 Hz und Enderwärmung der Schienen	Blindwiderstandsbelag	X_1	mΩ/m	0,042	0,036	0,026	0,027
der Schlenen	Impedanzbelag	Z_1	mΩ/m	0,056	0,046	0,031	0,032
der Strombahnen für	Wirkwiderstandsbelag	R_F	mΩ/m	0,075	0,056	0,048	0,037
4-pol. Systeme im Fehler-	Blindwiderstandsbelag	χ_{F}	mΩ/m	0,170	0,163	0,107	0,107
fall nach EN 61439-6	Impedanzbelag	Z_{F}	mΩ/m	0,186	0,173	0,117	0,113
Nullimpedanz							
nach DIN EN 60909-0 /		R ₀	mΩ/m	0,144	0,114	0,116	0,079
VDE 0102		X ₀	mΩ/m	0,199	0,225	0,124	0,130
		Z ₀	mΩ/m	0,246	0,252	0,169	0,152
Kurzschlussfestigkeit							
Bemessungskurzzeit-	Effektivwert t = 0,1 s	/ cw	kA	80	80	130	130
stromfestigkeit	Effektivwert t = 1 s	/ cw	kA	58	58	116	116
Bemessungsstoß- stromfestigkeit	Scheitelwert	/ pk	kA	176	176	286	286
Leitermaterial				Kupfer			
Anzahl der Schienen				4	4	7	8
Leiterquerschnitt	L1, L2, L3	Α	mm ²	706	1022	1412	1412
	PEN	Α	mm²	706	1022	706	1412
Brandlast							
Schienenkasten ohne Abgangsstelle	-	-	KWh/m	7,09	7,09	10,87	11,99
pro Abgangsstelle	-	-	KWh	8,32	8,32	12,04	12,96
Max. Befestigungsabstände für übliche mechanische Belastung	-	-	m	5	4	4	4

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

²⁾ Einschließlich Höhenversprünge $\leq 1.3 \text{ m}$

Systemabhängige Daten				LDC741.	LDC742.	LDC841.	LDC842.
				PEN=1/2L	PEN=L	PEN=1/2L	PEN=L
Bemessungsstrom InA1)							
horizontal / hochkant2)	IP34	/ nA	Α	4400	4400	5000	5000
	IP54	/ nA	Α	3200	3200	3600	3600
vertikal	IP34	/ nA	Α	3500	3500	4250	4250
	IP54	/ nA	Α	3200	3200	3600	3600
horizontal / flach	IP31 / IP54	/ nA	Α	2600	2600	3000	3000
Impedanzbelag							
der Strombahnen bei	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,012	0,008	0,008	0,009
50 Hz und + 20 °C Schie-	Blindwiderstandsbelag	X ₂₀	mΩ/m	0,023	0,021	0,021	0,018
nentemperatur	Impedanzbelag	Z ₂₀	mΩ/m	0,026	0,024	0,022	0,020
der Strombahnen bei	Wirkwiderstandsbelag	R₁	mΩ/m	0,012	0,013	0,011	0,011
50 Hz und Enderwärmung	Blindwiderstandsbelag	X ₁	mΩ/m	0,023	0,022	0,020	0,018
der Schienen	Impedanzbelag	Z_1	mΩ/m	0,026	0,025	0,023	0,021
der Strombahnen für	Wirkwiderstandsbelag	R_F	mΩ/m	0,036	0,027	0,031	0,026
4-pol. Systeme im Fehler-	Blindwiderstandsbelag	X_{F}	mΩ/m	0,090	0,086	0,073	0,080
fall nach EN 61439-6	Impedanzbelag	Z_{F}	mΩ/m	0,097	0,090	0,079	0,085
Nullimpedanz							
nach DIN EN 60909-0 /	-	R₀	mΩ/m	0,083	0,056	0,070	0,050
VDE 0102	-	X ₀	mΩ/m	0,072	0,093	0,088	0,106
	-	Z ₀	mΩ/m	0,109	0,109	0,113	0,118
Kurzschlussfestigkeit							
Bemessungskurzzeit-	Effektivwert t = 0,1 s	/ _{cw}	kA	130	130	130	130
stromfestigkeit	Effektivwert t = 1 s	/ _{cw}	kA	116	116	116	116
Bemessungsstoß- stromfestigkeit	Scheitelwert	/ pk	kA	286	286	286	286
Leitermaterial				Kupfer			
Anzahl der Schienen				7	8	7	8
Leiterquerschnitt	L1, L2, L3	Α	mm²	2044	2044	2464	2464
	PEN	Α	mm²	1022	2044	1232	2464
Brandlast							
Schienenkasten ohne Abgangsstelle	-	-	KWh/m	10,87	11,99	10,87	11,99
pro Abgangsstelle	-	-	KWh	12,04	12,96	12,04	12,96
Max. Befestigungsabstände für übliche mechanische Belastung	-	-	m	3	3	2	2

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

²⁾ Einschließlich Höhenversprünge ≤ 1,3 m

4.3.5 Schienenkästen LDC.6.. (5-polig, Kupfer)

Systemabhängige Daten				LDC262.	LDC362.	LDC661.	LDC662
				N=L	N=L	N=½L	PEN=L
Bemessungsstrom /nA1)							
horizontal / hochkant ²⁾	IP34	/ nA	Α	2000	2600	3400	3400
	IP54	/ nA	Α	1600	2000	2600	2600
vertikal	IP34	/ nA	Α	1650	2100	2700	2700
	IP54	I nA	Α	1600	2000	2600	2600
horizontal / flach	IP31 / IP54	/ nA	Α	1200	1550	2000	2000
Impedanzbelag							
der Strombahnen bei	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,036	0,029	0,015	0,017
50 Hz und + 20 °C Schie-	Blindwiderstandsbelag	X ₂₀	mΩ/m	0,043	0,037	0,027	0,027
nentemperatur	Impedanzbelag	Z ₂₀	mΩ/m	0,056	0,047	0,031	0,032
der Strombahnen bei	Wirkwiderstandsbelag	R ₁	mΩ/m	0,037	0,031	0,017	0,018
50 Hz und Enderwärmung	Blindwiderstandsbelag	X_1	mΩ/m	0,043	0,038	0,028	0,028
der Schienen	Impedanzbelag	Z_1	mΩ/m	0,057	0,049	0,033	0,034
der Strombahnen für	Wirkwiderstandsbelag	R_F	mΩ/m	0,081	0,060	0,062	0,058
5-pol. Systeme (PE) im Fehlerfall nach EN 61439-6	Blindwiderstandsbelag	X_{F}	mΩ/m	0,204	0,186	0,139	0,124
	Impedanzbelag	ZF	mΩ/m	0,220	0,195	0,153	0,137
der Strombahnen für	Wirkwiderstandsbelag	R _F	mΩ/m	0,078	0,059	0,048	0,037
5-pol. Systeme (N) im	Blindwiderstandsbelag	χ_{F}	mΩ/m	0,193	0,149	0,110	0,105
Fehlerfall nach EN 61439-6	Impedanzbelag	Z _F	mΩ/m	0,208	0,160	0,120	0,112
Nullimpedanz							
für 5-pol. Systeme (PE)	-	R ₀	mΩ/m	0,179	0,134	0,149	0,149
nach DIN EN 60909-0 /	-	X ₀	mΩ/m	0,387	0,357	0,238	0,248
VDE 0102	-	Z_0	mΩ/m	0,426	0,381	0,281	0,289
für 5-pol. Systeme (N)	-	R ₀	mΩ/m	0,150	0,110	0,119	0,080
nach DIN EN 60909-0 /	_	X ₀	mΩ/m	0,189	0,180	0,145	0,135
VDE 0102	_	Z ₀	mΩ/m	0,241	0,211	0,187	0,157
Kurzschlussfestigkeit				-,	-,	-,,,,,,,	-,
Bemessungskurzzeit-	Effektivwert t = 0,1 s	/ _{cw}	kA	80	80	130	130
stromfestigkeit	Effektivwert t = 1 s	/ _{cw}	kA	58	58	116	116
Bemessungsstoßstrom- festigkeit	Scheitelwert	/ _{pk}	kA	176	176	286	286
Bemessungskurzzeit-	Effektivwert t = 0,1 s	/ _{cw}	kA	48	48	78	78
Bemessungskurzzeit- tromfestigkeit des 5. Leiters	Effektivwert t = 1 s	/ _{cw}	kA	35	35	70	70

Systemabhängige Daten				LDC262.	LDC362.	LDC661.	LDC662.
				N=L	N=L	N=½L	PEN=L
Leitermaterial				Kupfer			
Anzahl der Schienen				5	5	8	9
Leiterquerschnitt	L1, L2, L3	Α	mm²	706	1022	1412	1412
	N	Α	mm²	706	1022	706	1412
	PE	Α	mm²	706	1022	706	706
Brandlast							
Schienenkasten ohne Abgangsstelle	-	-	KWh/m	7,29	7,29	10,87	11,99
pro Abgangsstelle	-	-	KWh	8,32	8,32	12,04	12,96
Max. Befestigungsabstände für übliche mechanische Belastung	-	-	m	5	4	4	4

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

²⁾ Einschließlich Höhenversprünge ≤ 1,3 m

Systemabhängige Daten				LDC761.	LDC762.	LDC861.	LDC862.
				N=1/ ₂ L	N=L	N=½L	N=L
Bemessungsstrom /nA1)							
horizontal / hochkant ²⁾	IP34	/ nA	Α	4400	4400	5000	5000
	IP54	/ nA	Α	3200	3200	3600	3600
vertikal	IP34	<i>I</i> _{nA}	Α	3500	3500	4250	4250
	IP54	<i>I</i> _{nA}	Α	3200	3200	3600	3600
horizontal / flach	IP31 / IP54	<i>I</i> _{nA}	Α	2600	2600	3000	3000
Impedanzbelag							
der Strombahnen bei	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,011	0,014	0,012	0,012
50 Hz und + 20 °C Schie-	Blindwiderstandsbelag	X ₂₀	mΩ/m	0,023	0,021	0,018	0,020
nentemperatur	Impedanzbelag	Z ₂₀	mΩ/m	0,025	0,025	0,022	0,023
der Strombahnen bei	Wirkwiderstandsbelag	R ₁	mΩ/m	0,013	0,015	0,013	0,013
50 Hz und Enderwärmung der Schienen	Blindwiderstandsbelag	X ₁	mΩ/m	0,024	0,022	0,020	0,020
der Schlenen	Impedanzbelag	Z ₁	mΩ/m	0,027	0,027	0,024	0,024
der Strombahnen für	Wirkwiderstandsbelag	R_F	mΩ/m	0,048	0,050	0,045	0,048
5-pol. Systeme (PE) im Fehlerfall nach	Blindwiderstandsbelag	χ_{F}	mΩ/m	0,118	0,133	0,123	0,119
EN 61439-6	Impedanzbelag	Z _F	mΩ/m	0,127	0,142	0,131	0,128
der Strombahnen für	Wirkwiderstandsbelag	R _F	mΩ/m	0,038	0,027	0,031	0,025
	Blindwiderstandsbelag	XF	mΩ/m	0,092	0,089	0,082	0,079
EN 61439-6	Impedanzbelag	Z _F	mΩ/m	0,100	0,093	0,088	0,083

4.3 Technische Daten

Systemabhängige Daten				LDC761.	LDC762.	LDC861.	LDC862.
				N=1/2L	N=L	N=1/2L	N=L
Nullimpedanz							
für 5-pol. Systeme (PE)	_	R₀	mΩ/m	0,116	0,100	0,103	0,103
nach DIN EN 60909-0 / VDE 0102	-	X_0	mΩ/m	0,186	0,216	0,188	0,184
VDE 0102	-	Z_0	mΩ/m	0,219	0,238	0,214	0,211
für 5-pol. Systeme (N)	-	R ₀	mΩ/m	0,087	0,058	0,072	0,050
nach DIN EN 60909-0 / VDE 0102	-	X 0	mΩ/m	0,105	0,112	0,093	0,091
VDE 0102	-	Z ₀	mΩ/m	0,137	0,126	0,118	0,104
Kurzschlussfestigkeit							
Bemessungskurzzeit-	Effektivwert t = 0,1 s	/ cw	kA	130	130	130	130
stromfestigkeit	Effektivwert t = 1 s	/ _{cw}	kA	116	116	116	116
Bemessungsstoßstrom- festigkeit	Scheitelwert	/ pk	kA	286	286	286	286
Bemessungskurzzeit-	Effektivwert t = 0,1 s	/ cw	kA	78	78	78	78
stromfestigkeit des 5. Leiters	Effektivwert t = 1 s	<i>I</i> _{cw}	kA	70	70	70	70
Leitermaterial				Kupfer			
Anzahl der Schienen				8	9	8	9
Leiterquerschnitt	L1, L2, L3	Α	mm²	2044	2044	2464	2464
	N	Α	mm²	1022	2044	1232	2464
	PE	Α	mm²	1022	1022	1232	1232
Brandlast							
Schienenkasten ohne Abgangsstelle	-	-	KWh/m	10,87	11,99	10,87	11,99
pro Abgangsstelle	-	-	KWh	12,04	12,96	12,04	12,96
Max. Befestigungsabstände für übliche mechanische Belastung	-	-	m	3	3	2	2

¹⁾ In Abhängigkeit von der Schutzart und der Verlegungsart

 $^{^{2)}}$ Einschl. Höhenversprünge \leq 1,3 m

4.3.6 Einspeisungen

Fremdverteileranschluss-Stücke, empfohlene Anschlussquerschnitte je Leiter

	Empfohlene Anschlussquerschnitte je Leiter [mm²]	Anschließbares System LDA / LDC			
LDA2420	CU 2 x 60 x 10	LDA142. und LDA242.			
LDA2620	CU 2 x 60 x 10	LDA162. und LDA262.			
LDA3420	CU 100 x 15	c 15 LDA342.			
LDA3620	CU 100 x 15	LDA362.			
LDA5410	CU 2 x 60 x 10	LDA441. und LDA541.			
LDA5610	CU 2 x 60 x 10	LDA461. und LDA561.			
LDA7410	CU 2 x 100 x 10	LDA641. und LDA741.			
LDA7610	CU 2 x 100 x 10	LDA661. und LDA761.			
LDA8410	CU 4 x 100 x 12	LDA841.			
LDA8610	CU 4 x 100 x 12	LDA861.			
LDA5420	CU 2 x 60 x 10	LDA442. und LDA542.			
LDA5620	CU 2 x 60 x 10	LDA462. und LDA562.			
LDA7420	CU 2 x 100 x 10	LDA642. und LDA742.			
LDA7620	CU 2 x 100 x 10	LDA662. und LDA762.			
LDA8420	CU 4 x 100 x 12	LDA842.			
LDA8620	CU 4 x 100 x 12	LDA862.			
LDC2420	CU 100 x 15	LDC241.			
LDC2620	CU 100 x 15	LDC262.			
LDC3420	CU 100 x 15	LDC342.			
LDC3620	CU 100 x 15	LDC362.			
LDC6410	CU 2 x 100 x 10	LDC641.			
LDC6420	CU 2 x 100 x 10	LDC642.			
LDC6610	CU 2 x 100 x 10	LDC661			
LDC6620	CU 2 x 100 x 10	LDC662.			
LDC7410	CU 4 x 100 x 12	LDC741.			
LDC7420	CU 4 x 100 x 12	LDC742.			
LDC7610	CU 4 x 100 x 12	LDC761.			
LDC7620	CU 4 x 100 x 12	LDC762.			
LDC8410	CU 4 x 120 x 12	LDC841.			
LDC8420	CU 4 x 120 x 12	LDC842.			
LDC8610	CU 4 x 120 x 12	LDC861.			
LDC8620	CU 4 x 120 x 12	LDC862.			

4.3.7 Abgangskästen mit Sicherungslasttrennschalter

Systemabhängige Daten							
Normen und Bestimmungen	IEC / EN 61439-1 und -6						
Klimafestigkeit	Feuchte Wärme, konstant, nach IEC 60068-2-78						
	Feuchte Wärme, zyklisch, nach IEC 60068-2-30						
Schutzart		IP30 Standard, IP54 mit Nachrüstsatz					
Umgebungstemperatur min. / °C max. / 24-h-Mittel		-5 / 40 / 35					
Bemessungsisolationsspannung AC U nach IEC / EN 61439-1	V	400					
Überspannungskategorie / Verschmutzungsgrad		III/3					
Bemessungsfrequenz	50 / 601)						
Bemessungsbetriebsspannung AC $U_{\rm e}$	V	400					
Typ LD-KAK./		31ST125	32ST125	3ST250	3ST400	3ST630	
Sicherungseinsatz		NH00	2 x NH00	NH1	NH2	NH3	
Bemessungsstrom Inc		125	2 x 125	250	400	630	
Max. Nennstrom Imax der Sicherung		125	2 x 125	250	400	630	
Max. zulässiger Betriebstrom I _{r max} bei IP30		125	2 x 125	250	400	545	
Max. zulässiger Betriebstrom I _{r max} bei IP54		125	2 x 100	200	315	520	
Schaltvermögen des eingebauten Sicherungslasttrenners nach EN 60947-3		AC-22 B	AC-22 B	AC-21 B	AC-22 B	AC-21 B	
Kurzschlussfestigkeit bei Schutz durch Sicherungen $I_{cf}^{2)}$		80	80	80	80	80	
Leitungseinführungen:							
stirnseitige Einführung ohne Kabelra							
seitliche Kabeleinführung mit Kabelra							
Mehrleiterkabel		2	2	2	2	3	
 Kabeltüllen (KT 4) für Kabel- durchmesser von 14 bis 68 mm 							
Einleiterkabel Aluplatte, ungebohrt für Kabelverschraubungen 10 × M50							
Bolzenanschluss mm		M8	M8	M10	M10	M10	
L1, L2, L3 mm		min. 1 x 10	min. 1 x 10	min. 1 x 25	min. 1 x 25	min. 1 x 25	
-	mm	max. 1 x 95	max. 1 x 95	max. 1 x 150	max. 2 x 240	max. 2 x 240	
N, PEN/PE	mm	min. 1 x 10	min. 1 x 10	min. 1 x 25	min. 1 x 25	min. 1 x 25	
-	mm	max. 1 x 95	max. 1 x 95	max. 1 x 150	max. 2 x 240	max. 2 x 240	

Systemabhängige Daten		
Farbe Abgangskästen		RAL 7035, lichtgrau
Werkstoff Abgangskästen		Stahlblech, verzinkt und lackiert
Gewichte	kg	33

¹⁾ Gemäß EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

²⁾ Sicherungen: IEC 269-1-2, NF EN 60269-1, NFC 63211, NFC 63210, VDE 0636-1, DIN 43620

4.3.8 Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter

		LD				
Normen und Bestimmungen		IEC / EN 61439-1 und	d -6			
Klimafestigkeit		Feuchte Wärme, konstant, nach IEC 60068-2-78				
		Feuchte Wärme, zykl	sch, nach IEC 60068-2	-30		
Schutzart		IP54, IP40 (Version K	S)			
Umgebungstemperatur min. / max. / 24-StdMittel	°C	-5 / 40 / 35				
Bemessungsisolationsspannung <i>U</i> nach AC IEC / EN 61439-1	V	400				
Überspannungskategorie / Verschmutzungsgrad		III/3				
Bemessungsfrequenz	Hz	50				
Bemessungsbetriebsspannung U_{e} AC	V	400				
Typ LD-KAK./		FSAM-250	FSAM-400	FSAM-630		
Bemessungsstrom Inc	Α	250	400	630		
Max. Bemessungsstrom I _{max} der Sicherung	Α	250	400	630		
Max. zulässiger Betriebsstrom Ir max	Α	230	4001)	540 ²⁾		
Schaltvermögen des eingebauten Sicherungs- lasttrennschalters nach EN 60947-3		AC 22 B	AC 22 B	AC 22 B		
Kurzschlussfestigkeit bei Schutz durch Sicherungen ³⁾		110	110	110		
Leitungseinführungen						
Mehrleiterkabel mit angebautem Kabelraum für seitliche Kabeleinführung		2 Kabeltüllen (KT 4) für Kabel- durchmesser von 14 68 m	2 Kabeltüllen (KT 4) für Kabel- durchmesser von 14 68 m	2 Kabeltüllen (KT 4) für Kabel- durchmesser von 14 68 m		
Einleiterkabel		Aluplatte ungebohrt für Kabeldurchmes- ser 21 35 mm	Aluplatte mit 5 x M50 Kabelverschrau- bungen für Kabel- durchmesser 21 35 mm	Aluplatte mit 5 x M50 Kabelverschrau- bungen für Kabel- durchmesser 21 35 mm		
Anschlussquerschnitte (Kupfer, Bolzenanschluss	mit k	(abelschuhen)				
L1, L2, L3	mm	1 x 25 bis 1 x 300/2 x 240	1 x 25 bis 1 x 300/2 x 240	1 x 25 bis 1 x 300/2 x 240		
N/ PEN/ PE	mm	1 x 25 bis 1 x 300/2 x 240	1 x 25 bis 1 x 300/2 x 240	1 x 25 bis 1 x 300/2 x 240		
Farbe Abgangskästen		RAL 7035, lichtgrau				
		Stahlblech, verzinkt und lackiert				
Werkstoff Abgangskästen		Stariibiech, verzinkt u	ila lackicit			

¹⁾ Bei Einbaulage der Abgangskästen vertikal ist eine Reduzierung um 5 % erforderlich (Reduktionsfaktor 0,95)

²⁾ Bei Einbaulage der Abgangskästen vertikal ist eine Reduzierung um 12 % erforderlich (Reduktionsfaktor 0,88)

³⁾ Sicherungen: IEC 269-1-2, NF EN 60269-1, NFC 63211, NFC 63210, VDE 0636-1, DIN 43620

4.3.9 Abgangskästen mit Leistungsschalter

Baugröße			1		2		3	
Typ Leistungsschalter			VL160	VL250	VL400	VL630	VL1250	
Normen und Bestimmungen			IEC / EN 61	439-1 und -6				
Klimafestigkeit			Feuchte Wärme, konstant, nach IEC 60068-2-78					
			Feuchte Wä	rme, zyklisch,	nach IEC 600	068-2-30		
Schutzart			IP54					
Umgebungstemperatur		°C	-5 / 40 / 35 ((min. / max. / :	24-h-Mittel)			
Überspannungskategorie / Verschmutz grad nach DIN EN 61439-1	zungs-		III/3					
Bemessungsisolationsspannung <i>U</i> nach IEC / EN 61439-1	AC	V	400					
Bemessungsbetriebsspannung $U_{\!\scriptscriptstyle extsf{P}}$	AC	V	400					
Bemessungsfrequenz		Hz	50 / 60 ²⁾					
Bemessungsstrom Inc		Α	100, 125, 160	200, 250	315, 400	630	800, 1000, 1250	
Max. zulässiger Betriebstrom Ir max			100 ¹⁾ , 125 ¹⁾ , 160 ¹⁾	200 ¹⁾ , 250 ¹⁾	315 ¹⁾ , 400 ¹⁾	580 ¹⁾	800, 1000, 1250 ¹⁾	
Schaltvermögen des Leistungsschalters			H (70 kA) oc	L (100 kA)				
Bedingter Bemessungskurzschlussstro (Werte für 690 V auf Anfrage)	om /cc	kA	70 oder 100				100	
Einstellstrom der Überlastauslöser								
Ausführung AE		Α	40 100 64 160	80 200 100 250	126 315 160 400	252 630	400 100 0 500 250	
Ausführung DC, EC		A	80 100 100 125 125 160	160 200 200 250	215 315 320 400	500 630	-	
Anschlüsse								
Leitungseinführungen								
Mehrleiterkabel								
Kabeltüllen			2 × KT 3		2 x KT 4		4 x KT 4	
Kabeldurchmesser		mm²	14 54		14 68		14 68	
Einleiterkabel								
Aluminiumplatte ungebohrt, für Kat bungen	oelverscl	hrau-	8 × M40		12 x M40		24 x M40	
Kabeleinführung seitlich			Ja		Ja		Ja	
3								

4.3 Technische Daten

Baugröße			1		2		3
Typ Leistungsschalter			VL160	VL250	VL400	VL630	VL1250
Anschlussquerschnitte (Kupfer)							
Anschluss-System			Direktanse rät	chluss am Ge-	Anschluss	fahnen	Kabelan- schluss- System
Bolzenanschluss			1 x M8	1 x M8	1 x M8	2 x M10 ³⁾	4 x M12 ⁴⁾
L1, L2, L3; N, PEN/PE	min.	mm²	5)	5)	5)	5)	4 x (4) x 70
	max.	mm ²	5)	5)	5)	5)	4 x (4) x 24 0
Farbe			RAL 7035	(Lichtgrau)			
Werkstoff			Stahlblech	n, verzinkt / lack	iert		
Gewichte		kg	-	37	58	61	107

¹⁾ Bei Einbaulage der Abgangskästen "unten hängend" ist eine Reduzierung um 10 % erforderlich (Reduktionsfaktor 0,9).

²⁾ Gemäß IEC / EN 61439-1 ist für Ströme > 800 A bei einer Frequenz von 60 Hz eine Reduzierung auf 95 % zu berücksichtigen.

³⁾ Für 2 Kabelschuhe je Leiter

⁴⁾ Für 4 Kabelschuhe je Leiter

⁵⁾ Gemäß den gültigen Normen

4.4 Gewichte

4.4.1 Schienenkästen

Schienenkästen mit Leitermaterial Aluminium

Die angegebenen Gewichte sind Metergewichte (kg/m) für Schienenkästen ohne Abgangsstellen in der Schutzart IP34. Für die Schutzart IP54 ist ein Mehrgewicht von 0,6 kg/m zu berücksichtigen. Bei Schienenkästen mit Abgangsstellen ist ein Mehrgewicht von 7 kg pro Abgangsstelle zu berücksichtigen.

	LDA1	LDA2	LDA3	LDA4	LDA5	LDA6	LDA7	LDA8
LDA.413	-	-	-	24,1	27,4	27,4	33,7	37,2
LDA.423	18,1	20,0	20,0	25,6	29,4	29,4	36,6	40,6
LDA.613	-	-		25,6	29,4	29,4	36,6	40,6
LDA.623	20,1	22,0	22,0	27,1	31,4	31,4	39,5	44,0

Schienenkästen mit Leitermaterial Kupfer

Die angegebenen Gewichte sind Metergewichte (kg/m) für Schienenkästen ohne Abgangsstellen in der Schutzart IP34. Bei Schienenkästen mit Abgangsstellen ist ein Mehrgewicht von 7 kg pro Abgangsstelle zu berücksichtigen. Für die Schutzart IP54 ist ein Mehrgewicht von 0,6 kg/m zu berücksichtigen.

	LDC2	LDC3	LDC6	LDC7	LDC8
LDC.413	-	-	60,3	82,0	100,2
LDC.423	38,8	51,2	67,0	91,8	112,6
LDC.613	-	-	67,0	91,8	112,6
LDC.623	45,5	61,0	73,7	101,6	125,0

4.5 Maßzeichnungen

Soweit nicht anders angegeben, sind alle Maße in mm.

4.5.1 Schienenkästen

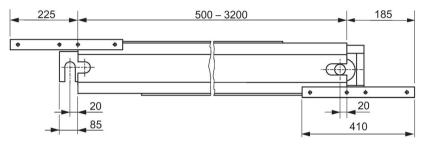
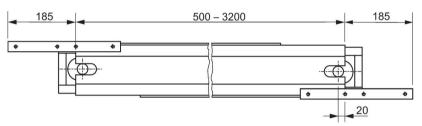
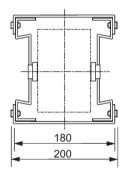
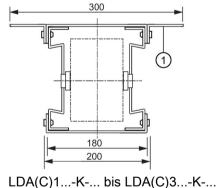
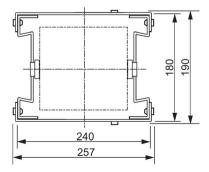
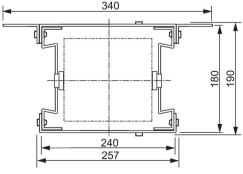


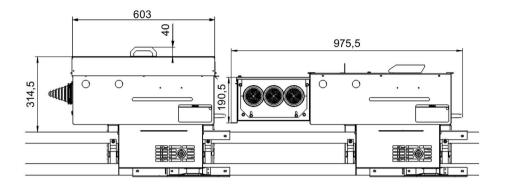
Bild 4-16 LDA(C)...-.., LDA(C)...-D-..., LDA(C)...-V-...

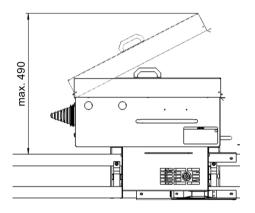




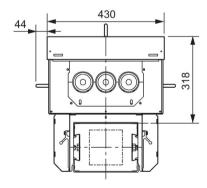

Bild 4-17 LDA(C)...-J-...


LDA(C)1... bis LDA(C)3...

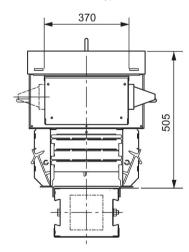
Kodierwinkel (nur bei Schienen mit Abgangsstellen)




LDA(C)4... bis LDA(C)8...


LDA(C)4...-K-... bis LDA(C)8...-K-...

4.5.2 Abgangskästen mit Sicherungslasttrennschalter



LD-K-.AK/.ST... ohne Kabelraum (stirnseitige Kabeleinführung)

Aufgesetzter Abgangskasten

LD-K-.AK/.ST... +LD-KR mit Kabelraum (seitliche Kabeleinführung)

Platzbedarf beim Aufsetzen

4.5.3 Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter

LD-K-.AK./FSAM250

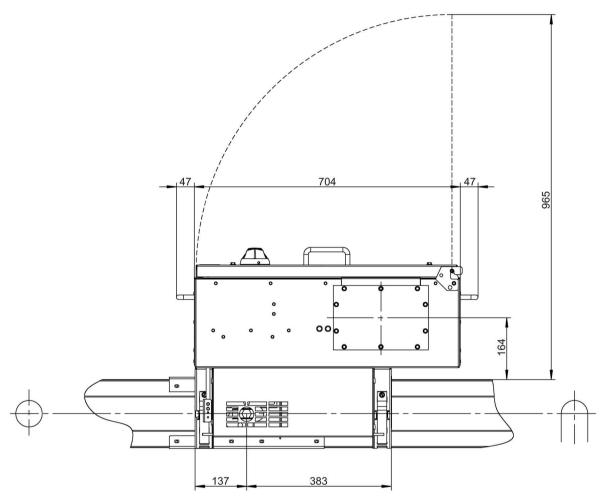
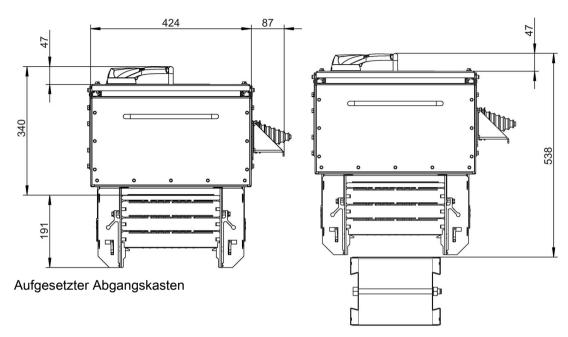



Bild 4-18 Abgangskästen mit NH-Lasttrennschalter

Platzbedarf beim Aufsetzen

4.5.4 Störlichtbogensichere Abgangskästen mit Sicherungslasttrennschalter

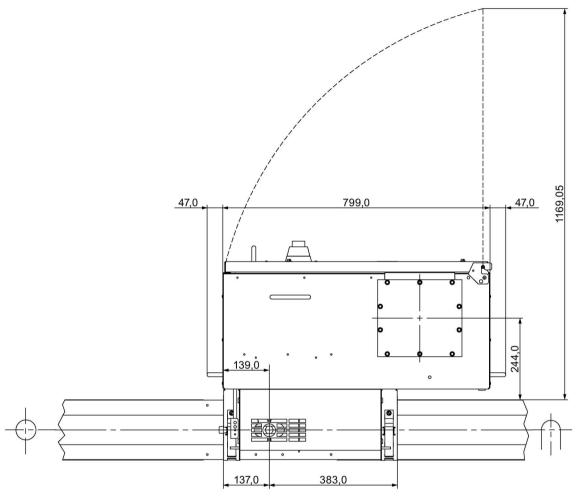
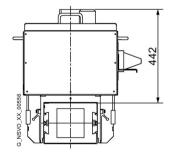
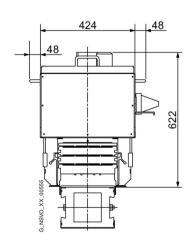
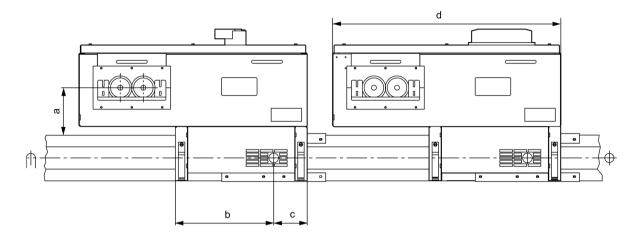
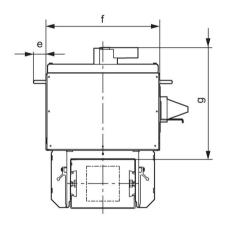
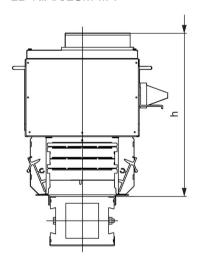




Bild 4-19 Abgangskästen mit NH-Lasttrennschalter: LD-K-.AK./FSAM400(630)


Aufgesetzter Abgangskasten


Platzbedarf beim Aufsetzen

4.5.5 Abgangskästen mit Leistungsschalter


Baugrößen bis 250 A und 400 A bis 630 A

LD-K.AK./LSH-...-.

LD-K.AK/LSM-...-.

Aufgesetzter Abgangskasten

Platzbedarf beim Aufsetzen

	а	b	С	d	е	f	g	h
Baugröße 1	158	317,5	136,5	600	47	424	410	559
Baugröße 2	187	387,5	136,5	900	47	424	410	604

4.5 Maßzeichnungen

Abgangskästen mit Leistungsschalter SENTRON 3VL, Baugrößen 800 A bis 1250 A

LD-K.AK./LSH-....-LS

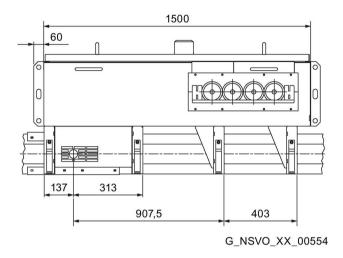
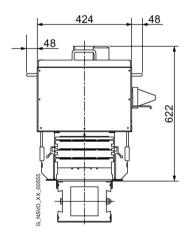
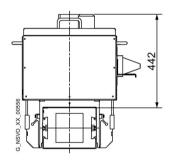




Bild 4-20 LD-K.AK./LSH-....-LS

Abgangskästen mit Leistungsschalter: LD-K.AK./LSH-....-LS Platzbedarf beim Aufsetzen

Abgangskästen mit Leistungsschalter: LD-K.AK./LSH-....-LS Aufgesetzter Abgangskasten

LD-K.AK./LSM-....-LS

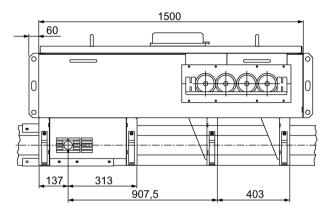
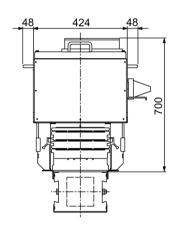
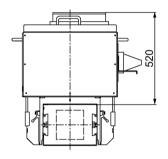
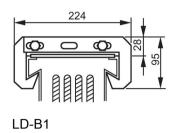
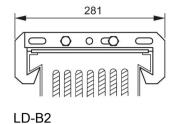
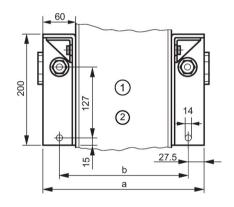




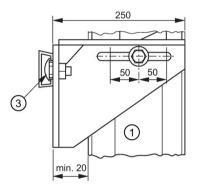
Bild 4-21 LD-K.AK./LSM-....-LS



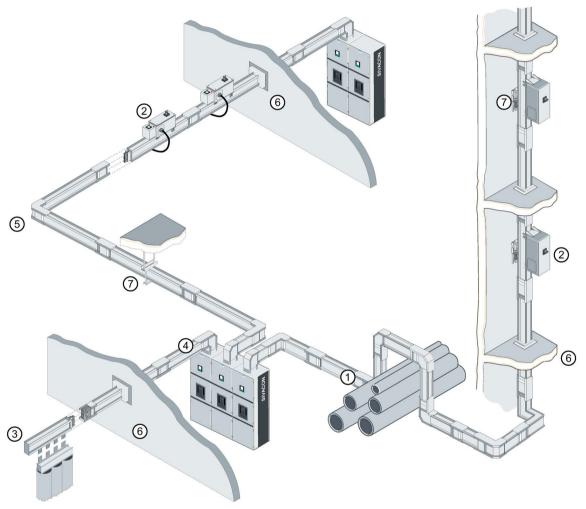


Abgangskästen mit Leistungsschalter: LD-K.AK./LSM-.....-LS Platzbedarf beim Aufsetzen Abgangskästen mit Leistungsschalter: LD-K.AK./LSM-.....-LS Aufgesetzter Abgangskasten


4.5.6 Zusatzausrüstung


Aufhängebügel für horizontale Aufhängung

Befestigungsbügel für vertikale Befestigung


LD-BV

- System LD
- ② Front
- 3 Bauseitig

Тур	а	b	
	[mm]	[mm]	
LDA1 LDA3	300	245	
LDC2 LDC3	300	245	
LDA4 LDA8	357	302	
LDC6 LDC8	357	302	

Planen mit LI

5.1 Systembeschreibung

- ① Gerade Schienenkästen mit und ohne Abgangsstellen
- 2 Abgangskästen
- 3 Einspeisungen
- 4 Verteileranschlusskästen
- Sichtungsänderungen
- 6 Brandschutz
- 7 Zusatzausrüstung für Montage

Bild 5-1 Übersicht Schienenverteiler LI-A / LI-C

5.2 Systemkomponenten

Der Schienenverteiler LI wird eingesetzt für:

- Energietransport
- Energieverteilung

Das System zeichnet sich durch hohe Flexibilität in der Lageunabhängigkeit aus und eignet sich besonders für die Energieverteilung in mehrgeschossigen Gebäuden. Die hohe Schutzart bis IP55 sowie Abgangskästen bis 1250 A garantieren eine sichere Versorgung in der Industrie mit hohem Energiebedarf.

5.2 Systemkomponenten

5.2.1 Vorbemerkung für Leistungsverzeichnisse

Grundbeschreibung Schienenverteiler 800 A bis 6300 A

Schienenverteiler sind als bauartgeprüfte Niederspannungs-Schaltgerätekombination gemäß IEC / EN 61439-1 und -6 in anschlussfertiger Ausführung zu liefern und zu montieren.

Nachfolgende Beschreibungen sind Kalkulations- und Vertragsbestandteile. Sie sind bei den Beschreibungen der Einzelanlagen und der Betriebsmittel, auch wenn sie nicht mehr im Detail erwähnt werden, zu berücksichtigen.

Der Schienenverteiler muss geeignet sein:

- Für den Energietransport, z. B. zwischen Transformator und Niederspannungs-Hauptverteilung
- Für die Energieverteilung als flächendeckende Versorgung
- Für horizontale und für vertikale Installation

Der Schienenverteiler muss aus standardisierten Systembausteinen bestehen, z. B.:

- Gerade Schienenkästen mit und ohne Abgangsstellen
- Einspeisekästen für Transformator-, Verteiler- und Kabeleinspeisungen
- Richtungsänderungen mit Winkel, versetztem Winkel, Knie, versetztem Knie, Z-Kästen und T-Kästen
- Abgangskästen
- Zubehör

Alle geraden Schienenkästen müssen in Längen bis max. 3 m ab Werk lieferbar sein. Flexible Richtungsänderungen und Richtungsänderungen als Kabelverbindungen werden nicht zugelassen. Dehnungsausgleichskästen und Festpunkte sind nach Bedarf zu projektieren.

Die Schienenverteiler mit Abgangsöffnungen sind nach Bedarf mit Abgangskästen zu bestücken. Lage und Anzahl der Abgangsstellen müssen wählbar sein.

Bei Bedarf muss es möglich sein, den Schienenverteiler mit einer nach EN 1366-3 geprüften, asbestfreien Brandschottung zur Wand oder zur Deckenführung auszurüsten, die wahlweise der Feuerwiderstandsklasse El90 oder El120 gemäß EN 13501 entspricht.

Bei Bedarf muss es möglich sein, den Schienenverteiler mit der Funktionserhaltsklasse E15, E30, E60 oder E90 gemäß DIN 4102-12 anzubieten. Der Brandschutz für den Funktionserhalt ist vor Ort durch den Installateur zu montieren. Das Zertifikat für den Funktionserhalt ist dem Angebot beizulegen.

Das Gehäuse besteht aus lichtgrau lackiertem Aluminium (RAL 7035).

Die Verbindung der einzelnen Systembausteine erfolgt durch Einhängen eines Hakens in einen Bolzen und Anziehen einer dem heutigen Stand der Technik entsprechenden wartungsfreien Bolzenklemme. Das für die Klemmverbindung notwendige Drehmoment von 50 Nm muss durch das Abscheren des äußeren Teils der Abreißmutter angezeigt werden. Wenn die Abreißmutter nicht mit 50 Nm angezogen ist, darf die Abdeckung der Klemmverbindung nicht angebracht werden.

Die Stromschienen müssen aus Aluminium oder Kupfer bestehen und über ihre gesamte Länge isoliert sein. Die Aluminiumschienen sind mit Nickel und Zinn, die Kupferschienen mit Zinn beschichtet. Die Isolierstoffbeschichtung besteht aus Mylar oder, optional, aus einer Kombination aus Epoxidharz und Mylar.

Die Leiterquerschnitte dürfen die in den technischen Daten angegebenen Werte nicht unterschreiten.

5.3 Konformität und Prüfungsnachweise

Der Hersteller des Schienensystems hat ein zertifiziertes Qualitätsmanagementsystem nach EN ISO 9001 zu unterhalten und nachzuweisen.

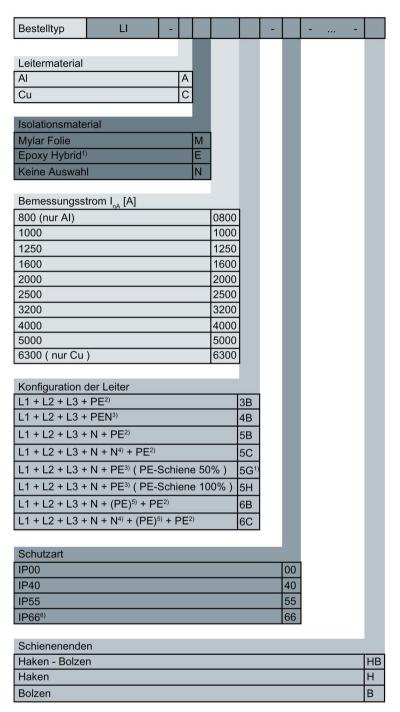
Die nachstehenden Qualifikationen für das gesamte System sind durch Zertifikate oder Konformitätserklärungen nachzuweisen:

- Typprüfung IEC / EN 61 439-1 und -6 (VDE 0660-600-1 und -6)
- Klimafestigkeit nach IEC 60068-2 Teil-1, Teil-14, Teil-30, Teil-52, Teil-61 und Teil-78
- Brandschutz, geprüft nach EN 1366-3
- Funktionserhalt, geprüft nach DIN 4102-12 (optional)
- Wartungsfreiheit
- Silikon- und Halogenfreiheit
- Sprinklertauglichkeit

Spezielle, zusätzliche Eigenschaften der Systemkomponenten sind gesichert nachzuweisen.

Technische Daten der Schienenverteiler

Тур		Wert
Umgebungstemperatur min. / max. / 24-h-N	/littel	-5 / +40 / +35° C
Schutzart		IP55
Drehmoment für Klemmblock		50 ± 5 Nm
Oberflächenbehandlung der Stromschiener	า	über die Gesamtlänge isoliert
Werkstoff Schienenkästen		lackierte Aluminiumkapselung
Farbe Schienenkästen		RAL 7035 (Lichtgrau)
Bemessungsisolationsspannung	AC	1000 V
Bemessungsbetriebsspannung	AC	bis 1000 V für Energietransport 1)
Bemessungsbetriebsspannung	AC	bis 690 V für Energieverteilung 1)
Bemessungsfrequenz		50 / 60 Hz
Bemessungsstrom		2)
Bemessungskurzzeitstromfestigkeit		
Außenleiter Icw (1 S)		2)
Neutralleiter Icw (1 s)		2)
5. Leiter /cw (1 s)		2)
Bemessungsstoßstromfestigkeit /pk		2)
Leitermaterial		AL / CU 1)
Anzahl der Schienen		2)
Leiterquerschnitt		
L1, L2, L3		2)
N		2)
PE (äquivalenter CU-Querschnitt)		2)
Isoliert geführter PE (Clean Earth)		2)
Brandlasten		
Schienenkasten ohne Abgangsstelle		2)
Pro Abgangsstelle		0,98 kWh
Max. Befestigungsabstände		
Horizontal hochkant		2)
Horizontal flach		2 m
Gehäuseabmessungen		2)


¹⁾ Nicht Zutreffendes bitte streichen

5.3.1 Typenschlüssel

Die Basiskomponenten des Systems LI werden mit einem Typenschlüssel bestimmt. In Abhängigkeit des Bemessungsstroms, des Leitermaterials und der Netzform oder der Leiterkonfiguration wird der Typ beschrieben und ausgewählt.

Der folgende Typenschlüssel ermöglicht eine genaue Definition des Systems.

²⁾ Daten der gewählten Systeme eintragen. Die Werte finden Sie in den Technischen Daten.

- 1) Auf Anfrage
- 2) PE-Leiter = Gehäuse
- 3) PE- oder PEN-Leiter = Gehäuse und zusätzliche Stromschiene
- 4) Doppelter Querschnitt des Neutralleiters (200 %) durch eine zusätzliche Stromschiene
- 5) Separat geführter PE-Leiter durch eine zusätzliche isolierte Stromschiene (Clean Earth)
- 6) Für Energietransport und Innenraumaufstellung

Bild 5-2 Typenschlüssel des Systems LI

5.3 Konformität und Prüfungsnachweise

Auswahlbeispiel

In einem Projekt wird ein Bemessungsstrom von 2500 A ermittelt. Als Leitermaterial soll Aluminium und Isolationsmaterial Mylar verwendet werden. Vorgeschrieben ist ein 5-poliges System. Der Querschnitt des N-Leiters soll gleich dem Außenleiterquerschnitt sein.

Daraus ergibt sich folgender Typ:

LI-AM25005B

Baugrößen

Die Baugrößen hängen ab von der Bemessungsstromstärke und dem Leitermaterial. Insgesamt gibt es zehn Baugrößen. Für die Ausführung mit Aluminium und Kupfer sind jeweils sechs Baugrößen als Einfachsystem und drei Baugrößen als Doppelsystem ausgeführt.

Einfachsysteme bestehen aus einem Gehäuse mit je 3 bis 6 Schienen aus Aluminium oder Kupfer. Die Doppelsysteme führen in zwei Gehäusen je 6 bis 12 Schienen.

Die exakte Anzahl der Schienen richtet sich nach der geforderten Leiterkonfiguration.

Baugrößen (H x B) Einfachsystem:

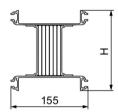


Bild 5-3 Baugrößen Einfachsystem SB

Tabelle 5- 1 System AL

Höhe H [mm]	System
111	LI-A.0800
132	LI-A.1000
146	LI-A.1250
182	LI-A.1600
230	LI-A.2000
297	LI-A.2500

Die Breite B ist immer 155 mm.

Tabelle 5- 2 System CU

Höhe H [mm]	System
111	LI-C.1000
117	LI-C.1250
146	LI-C.1600
174	LI-C.2000
213	LI-C.2500
280	LI-C.3200

Die Breite B ist immer 155 mm.

Baugrößen (H x B) Doppelsystem

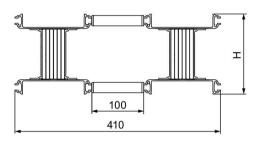
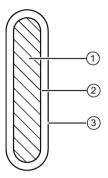


Bild 5-4 Baugrößen Doppelsystem DB

Tabelle 5-3 System AL

Höhe H [mm]	System
182	LI-A.3200
230	LI-A.4000
297	LI-A.5000

Die Breite B ist immer 410 mm.

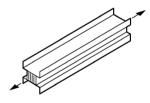

Tabelle 5-4 System CU

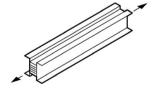
Höhe H [in mm]	System
174	LI-C.4000
213	LI-C.5000
280	LI-C.6300

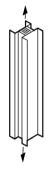
Die Breite B ist immer 410 mm.

Aufbau der Stromschienen

Generell sind die Stromschienen des Schienensystems LI verzinnt und mit einem hochbeständigen Isolierstoff umhüllt. Das Leitermaterial besteht beim System LI-A aus Aluminium und beim System LI-C aus Kupfer. Bei der Aluminiumschiene wird zusätzlich zu der Zinnauflage eine Nickelschicht aufgetragen.




- 1 Aluminiumschiene (LI-A), Kupferschiene (LI-C)
- 2 Nickelschicht, Zinnauflage (LI-A), Zinnauflage (LI-C)
- Hochwärmebeständige Isolierstoffumhüllung oder Epoxybeschichtung und hochwärmebeständige Isolierstoffumhüllung (auf Anfrage)


Bild 5-5 Aufbau einer Stromschiene

Einbaulagen und Bemessungsstrom

Durch die Sandwichbauweise ist die Strombelastbarkeit des Schienensystems LI von der Einbaulage unabhängig. Somit besteht eine hohe Flexibilität in der Strangführung. Eine Stromreduzierung ist für die Schienenlagen hochkant und flach bei horizontaler Strangführung sowie bei Steigeleitungen (vertikale Strangführung) in der Regel nicht notwendig. Abweichungen für die Einbaulage "horizontal flach" sind in den technischen Daten der jeweiligen Systemgröße aufgeführt.

Strangverlauf horizontal, Schienenlage hochkant

Strangverlauf horizontal, Schienenlage flach

Strangverlauf vertikal

5.4 Leiterkonfiguration

Das Schienensystem LI erhalten Sie in acht verschiedenen Leiterkonfigurationen. Die Leiterkonfigurationen hängen ab von:

- Der Netzform
- Der Größe des N- und PE-Querschnitts
- Einem möglichen zusätzlichen isolierten PE-Leiter (Clean Earth)

5.4 Leiterkonfiguration

-	System	Leiterkonfigurationen / -schienen			_ Gehäuse				
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	LI3B	L1	L2	L3	1)	-	-	-	Entspricht PE-Leiter
1234	LI4B	PEN	L1	L2	L3	1)	-	-	Galvanische Verbindung zwischen Gehäuse und PEN-Schiene
12345	LI5B	N	L1	L2	L3	1)	-	-	Entspricht PE-Leiter
	LI5C	N	N	L1	L2	L3	1)	-	Entspricht PE-Leiter
	LI5G	N	L1	L2	L3	0,5 PE	1)	-	Galvanische Verbindung zwischen Gehäuse und PE- Schiene
	LI5H	N	L1	L2	L3	PE	1)	-	Galvanische Verbindung zwischen Gehäuse und PE- Schiene
123456	LI6B	N	L1	L2	L3	Clean Earth	1)	-	Gehäuse entspricht PE- Leiter
1234567	LI6C	N	N	L1	L2	L3	Clean Earth	1)	Entspricht PE-Leiter

¹⁾ Gehäuse

5.4.1 Gerade Schienenkästen

Gerade Schienenkästen für horizontale Installation ohne Abgangsstellen

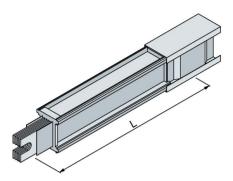


Bild 5-6 Ohne Abgangsstellen

	Länge	Typ ¹⁾
Längen	0,50 3,00 m	LIL

¹⁾ Projektierbar sind die Längen L von 0,50 m bis 3,00 m im Raster von 0,01 m.

Gerade Schienenkästen für horizontale und vertikale Installation mit Abgangsstellen

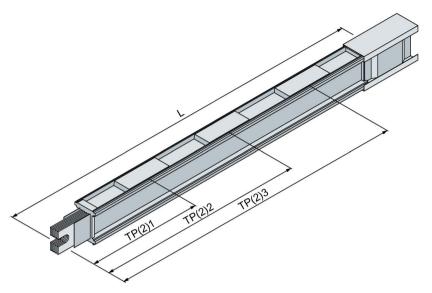


Bild 5-7 Mit Abgangsstellen Einfachsystem

	Länge	Typ¹)
Längen Einfachsystem	1,15 3,00 m	LIL
max. 3 Abgangsstellen		einseitig
oben oder unten wählbar		LILTP-10 (1 Abgangsstelle oben)
		LILTP-20 (2 Abgangsstellen oben)
		LILTP-30 (3 Abgangsstellen oben)
		LILTP-01 (1 Abgangsstelle unten)
		LILPT-02 (2 Abgangsstellen unten)
		LILPT-03 (3 Abgangsstellen unten)

Projektierbar sind Längen L von 1,15 m bis 3,00 m im Raster von 0,01 m Abgangsstellen oben sind von 670 bis 2510 mm wählbar; Abgangsstellen unten sind von 490 bis 2330 mm wählbar; Abstand der Abgangsstellen ist 660 mm.

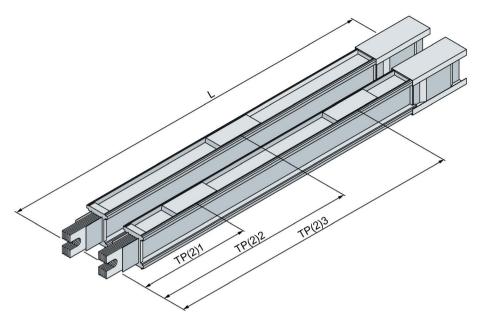


Bild 5-8 Mit Abgangsstellen Doppelsystem

	Länge	Typ1)
Längen Doppelsystem	1,15 3,00 m	LIL
max. 6 Abgangsstellen		zweiseitig
oben und unten sind		LILTP-11 (1 Abgangsstelle oben und 1 Abgangsstelle unten)
wählbar		LILTP-12 (1 Abgangsstelle oben und 2 Abgangsstellen unten)
		LILTP-13 (1 Abgangsstelle oben und 3 Abgangsstellen unten)
		LILTP-21 (2 Abgangsstellen oben und 1 Abgangsstelle unten)
		LILTP-22 (2 Abgangsstellen oben und 2 Abgangsstellen unten)
		LILTP-23 (2 Abgangsstellen oben und 3 Abgangsstellen unten)
		LILTP-31 (3 Abgangsstellen oben und 1 Abgangsstelle unten)
		LILTP-32 (3 Abgangsstellen oben und 2 Abgangsstellen unten)
		LILTP-33 (3 Abgangsstellen oben und 3 Abgangsstellen unten)

¹⁾ Projektierbar sind Längen L von 1,15 m bis 3,00 m im Raster von 0,01 m

Abgangsstellen oben sind von 670 bis 2510 mm wählbar;

Abgangsstellen unten sind von 490 bis 2330 mm wählbar;

Abstand der Abgangsstellen ist 660 mm.

Bei dem Doppelsystem sind die Abgangsstellen immer auf die beiden Schienenstränge oben bei dem einen und unten bei dem anderen gleichmäßig zu verteilen.

5.4.2 Richtungsänderungen

Gewinkelte Schienenkästen für horizontale Installation

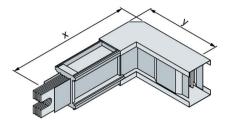


Bild 5-9 Winkel LI-.....-LR(L)-FX(FY)-...

Länge	System	Тур
X = 0,48 1,90 m	LI-A.0800 LI-A.2500	LILR(L)-FX(FY)
FY = 0,27 m	LI-C.1000 LI-C.3200	
Y = 0,48 1,90 m		
FX = 0,27 m		
X = 0,74 1,90 m	LI-A.3200 LI-A.5000	
FY = 0,525 m	LI-C.4000 LI-C.6300	
Y = 0,74 1,90 m		
FX = 0,525 m		

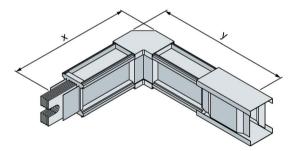


Bild 5-10 Winkel LI-.....-LR(L)-...

Länge	System	Тур
X = 0,48 1,90 m	LI-A.0800 LI-A.2500	LILR(L)
Y = 0,48 1,90 m	LI-C.1000 LI-C.3200	
X = 0,74 1,90 m	LI-A.3200 LI-A.5000	
Y = 0,74 1,90 m	LI-C.4000 LI-C.6300	
Max. X + Y = 2800 mm		

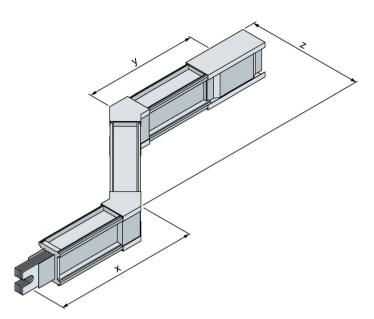


Bild 5-11 Z-Kasten LI.....-ZR(L)45-....

Länge	System	Тур
X/Y min = 0,40 m	LI-A.0800 LI-A.2500	LIZR(L)45
Z min = 0,38 m	LI-C.1000 LI-C.3200	_
X/Y min = 0,50 m	LI-A.3200 LI-A.5000	_
Z min = 0,63 m	LI-C.4000 LI-C.6300	

Max. X + Y + Z = 2800 mm

Max. Z = 1200 mm

Max. X und Y = 1500 mm

Gewinkelte Schienenkästen für horizontale und vertikale Installation

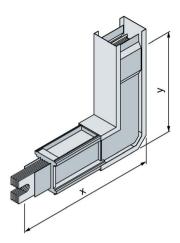


Bild 5-12 Knie LI-.....-LV(H)-FX(FY)-...

Länge	System	Тур
X = 0,42 1,90 m	LI-A.0800 / LI-C.1000	LILV(H)-FX(FY)
FY = 0,30 m		
Y = 0,42 1,90 m		
FX = 0,30 m		
X = 0,43 1,90 m	LI-A.1000 / LI.C.1250	
FY = 0.32 m		
Y = 0,43 1,90 m		
FX = 0,32 m		
X = 0,45 1,90 m	LI-A.1250 / LI-C.1600	
FY = 0.32 m		
Y = 0,45 1,90 m		
FX = 0,32 m		
X = 0,48 1,90 m	LI-A.1600 / LI-C.2000	
FY = 0.37 m	LI-A.3200 / LI-C.4000	
Y = 0,48 1,90 m		
FX = 0,37 m		
X = 0,53 1,90 m	LI-A.2000 / LI-C.2500	
FY = 0.42 m	LI-A.4000 / LI-C.5000	
Y = 0,53 1,90 m		
FX = 0,42 m		
X = 0,60 1,90 m	LI-A.2500 / LI-C.3200	
FY = 0.47 m	LI-A.5000 / LI-C.6300	
Y = 0,60 1,90 m		
FX = 0.47 m		

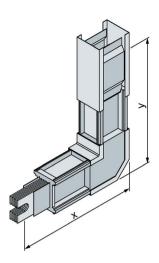


Bild 5-13 Knie LI-.....-LV(H)-...

Länge	System	Тур
X = 0,44 1,90 m	LI-A.0800 / LI-C.1000	LILV(H)-FX(FY)
Y = 0,44 1,90 m		
X = 0,46 1,90 m	LI-A.1000 / LI-C.1250	
Y = 0,46 1,90 m		
X = 0,47 1,90 m	LI-A.1250 / LI-C.1600	
Y = 0,47 1,90 m		<u></u>
X = 0,51 1,90 m	LI-A.1600 / LI-C.2000	
Y = 0,51 1,90 m	LI-A.3200 / LI-C.4000	<u></u>
X = 0,56 1,90 m	LI-A.2000 / LI-C.2500	
Y = 0,56 1,90 m	LI-A.4000 / LI-C.5000	
X = 0,62 1,90 m	LI-A.2500 / LI-C.3200	<u> </u>
Y = 0,62 1,90 m	LI-A.5000 / LI-C.6300	
Max. X + Y = 3000 mm		

5.4 Leiterkonfiguration

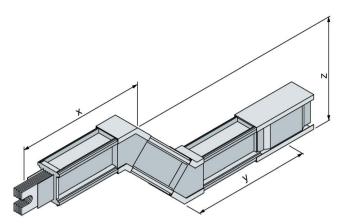


Bild 5-14 Z-Kasten LI.-ZV(H)45-.....

Länge	System	Тур
X / Y min. = 0,40 m	LI-A.0800 / LI-C.1000	LIZV(H)45
Z min. = 0,37 m		
X / Y min. = 0,42 m	LI-A.1000 / LI-C.1250	
Z min, = 0,38 m		
X / Y min. = 0,42 m	LI-A.1250 / LI-C.1600	
Z min. = 0,40 m		
X / Y min. = 0,42 m	LI-A.2000 / LI-C.2500	
Z min. = 0,43 m	LI-A.2500 / LI-C.3200	
X / Y min. = 0,44 m	LI-A.1600 / LI-C.2000	
Z min. = 0,48 m	LI-A.3200 / LI-C.4000	
X / Y min. = 0,45 m	LI-A.4000 / LI-C.5000	
Z min. = 0,55 m	LI-A.5000 / LI-C.6300	
Max. X + Y + Z = 2800 mm		
Max. X / Y = 1500 mm		

Max. Z = 1200 mm

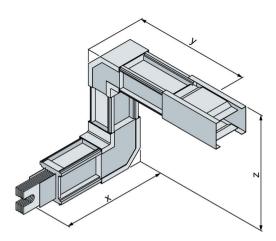


Bild 5-15 Winkel versetzt LI-.....-LR(L)V(H)_...

Länge	System	Тур
X = 0,44 1,20 m / Y = 0,48 1,20 m	LI-A.0800 / LI-C.1000	LILR(L)V(H)
Z = 0,51 1,20 m		<u></u>
X = 0,46 1,20 m / Y = 0,48 1,20 m	LI-A.1000 / LI-C.1250	
Z = 0,54 1,20 m		
X = 0,47 1,20 m / Y = 0,48 1,20 m	LI-A.1250 / LI-C.1600	
Z = 0,55 1,20 m		<u></u>
X = 0,51 1,20 m / Y = 0,48 1,20 m	LI-A.1600 / LI-C.2000	
Z = 0,58 1,20 m		<u></u>
X = 0,56 1,20 m / Y = 0,48 1,20 m	LI-A.2000 / LI.C.2500	
Z = 0,63 1,20 m		<u></u>
X = 0,62 1,20 m / Y = 0,48 1,20 m	LI-A.2500 / LI-C3200	
Z = 0,70 1,20 m		<u></u>
X = 0,51 1,20 m / Y = 0,74 1,20 m	LI-A.3200 / LI-C.4000	
Z = 0,84 1,20 m		
X = 0,56 1,20 m / Y = 0,74 1,20 m	LI-A.4000 / LI-C.5000	
Z = 0,89 1,20 m		
X = 0,62 1,20 m / Y = 0,74 1,20 m	LI-A.5000 / LI-C.6300	
Z = 0,95 1,20 m		
Max. X + Y + Z = 3000 mm		

5.4 Leiterkonfiguration

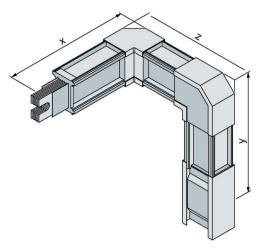


Bild 5-16 Knie versetzt LI-.....-LV(H)R(L)

Länge	System	Тур
X = 0,48 1,20 m / Y = 0,44 1,20 m	LI-A.0800 / LI-C.1000	LILV(H)R(L)
Z = 0,51 1,20 m		
X = 0,48 1,20 m / Y = 0,46 1,20 m	LI-A.1000 / LI-C.1250	
Z = 0,54 1,20 m		
X = 0,48 1,20 m / Y = 0,47 1,20 m	LI-A.1250 / LI-C.1600	
Z = 0,55 1,20		<u></u>
X = 0,48 1,20 m / Y = 0,51 1,20 m	LI-A.1600 / LI-C.2000	
Z = 0,58 1,20 m		
X = 0,48 1,20 m / Y = 0,56 1,20 m	LI-A.2000 / LI-C.2500	
Z = 0,63 1,20 m		
X = 0,48 1,20 m / Y = 0,62 1,20 m	LI-A.2500 / LI-C.3200	
Z = 0,70 1,20 m		
X = 0,74 1,20 m / Y = 0,51 1,20 m	LI-A.3200 / LI-C.4000	
Z = 0,84 1,20 m		
X = 0,74 1,20 m / Y = 0,56 1,20 m	LI-A.4000 / LI-C.5000	
Z = 0,89 1,20 m		
X = 0,74 1,20 m / Y = 0,62 1,20 m	LI-A.5000 / LI-C.6300	
Z = 0,95 1,20 m		
Max. X + Y + Z = 3000 mm		

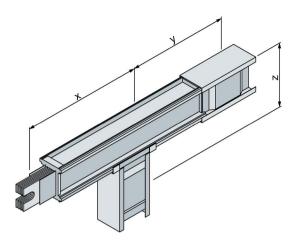


Bild 5-17 T-Kasten LI.....-T-X* /Y* /Z*

Länge		System	Тур
X / Y min. = 0,45 m	Z = 0.311 m	LI-A.0800 / LI-C.1000	LIT
	Z = 0.332 m	LI-A.1000	
	Z = 0.317 m	LI-C.1250	
X / Y min = 0,50 m	Z = 0,346 m	LI-A.1250 / LI-C.1600	
	Z = 0.382 m	LI-A.1600	
	Z = 0.430 m	LI-A.2000	
	Z = 0.374 m	LI-C.2000	
	Z = 0.413 m	LI-C.2500	
X / Y min = 0,55 m	Z = 0,497 m	LI-A.2500	
	Z = 0.382 m	LI-A.3200	
	Z = 0.480 m	LI-C.3200	
	Z = 0.374 m	LI-C.4000	
X / Y min = 0,60 m	Z = 0,430 m	LI-A.4000	
	Z = 0.413 m	LI-C.5000	
,	Z = 0,497 m	LI-A.5000	_
	Z = 0,480 m	LI-C.6300	
Max V V = 1500 mm	·		

Max. X, Y = 1500 mm

Max. X + Y + Z = 2500 mm

5.4.3 Verteileranbindung für Siemens-Energieverteiler

Anbindung an die Energieverteilersysteme als bauartgeprüfte Niederspannungs-Schaltgerätekombination nach DIN EN 61439-1 und DIN EN 61439-6

Die Verbindung von Verteiler- und Schienenverteiler LI erfolgt über ein eingebautes Schienenverteiler-Anschluss-Stück für Bemessungsströme bis 6300 A (I_e = 6300 A auf Anfrage). Die Schienen können angeschlossen werden:

- Von oben
- Von unten (auf Anfrage)

Dies ermöglicht eine flexible Anordnung. Die Anbindung zwischen Schienenverteiler und den Verteilersystemen SIVACON S8 garantiert eine hohe Kurzschlussfestigkeit, die durch eine Bauartprüfung sichergestellt ist und enorme Sicherheit für die Energieübertragung bietet.

Bild 5-18 Verteileranbindung

5.4.4 Anschluss-Stück für Fremdverteiler

Wenn Sie das Stromschienensystem an einen Verteiler anbinden wollen, der nicht von Siemens hergestellt wird, besteht die Möglichkeit, diese Verbindung mit einem Fremdverteiler-Anschluss-Stück LI. - FA auszuführen. Das Anschluss-Stück wird in den Verteiler eingebaut und stellt die Schnittstelle zur Verkupferung der Verteilung dar.

Ausführungen

Insgesamt stehen je nach Netzform acht verschiedene Leiterkonfigurationen zur Auswahl. Die Bemessungsströme bis max. 6300 A entsprechen den Angaben im Kapitel "Technische Daten (Seite 197)". Nach DIN EN 61439-1 und DIN EN 61439-6 darf hierbei die Grenztemperatur in Verteileranlagen bei Erwärmung durch die Stromwärme nicht überschritten werden. Die Grenztemperatur der isolierstoffumhüllten Schienen beträgt 135 °C. Die erforderlichen Anschlussquerschnitte für die Verkupferung finden Sie im Kapitel "Technische Daten (Seite 197)".

Einbau des Anschluss-Stücks

Die Verkupferung des Anschluss-Stücks im Verteiler muss vom Verteilerhersteller oder nach seinen Angaben ausgeführt werden. Der Verteilerhersteller muss sicherstellen, dass die notwendige Kurzschlussfestigkeit erreicht wird und die zulässige Grenztemperatur des Fremdverteiler-Anschluss-Stücks nicht überschritten wird.

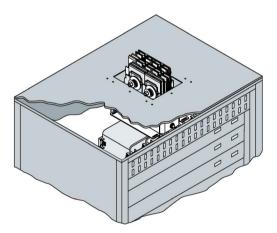
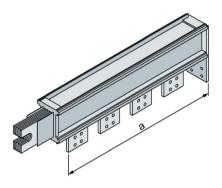
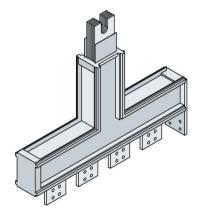


Bild 5-19 Fremdverteiler-Anschluss-Stück


5.4.5 Anschluss-Stück für Transformatoren und Verteiler


Bei Betrachtung der verschiedenen Bemessungsströme sowie der unterschiedlichen Reihenfolgen und Abständen der Phasen verfügen Transformatoren über eine hohe Typenvielfalt.

Diese Typenvielfalt erfordert eine hohe Flexibilität beim Transformatoranschluss von Schienensystemen.

Das universelle Anschluss-Stück können Sie auch zur Anbindung von Verteilern einsetzen.

Für Schienenverteiler LI bis 6300 A stehen Transformatoranschluss-Stücke mit Schienenanschluss seitlich (LI....-TCE.) und Schienenanschluss oben (LI....-TCET.) zur Verfügung.

Schienenanschluss seitlich

Schienenanschluss oben

Die Gesamtlänge ergibt sich aus den zu projektierenden Phasenabständen der Anschluss-Stücke (ca. 3 x Phasenabstand + 300 mm).

Typ Anschluss-Stück	Wählbarer Phasenabstand
LITCEL	135 800 mm
LITCER	135 800 mm
LITCETL	135 800 mm
LITCETR	135 800 mm

Phasenfolge

Für die Auswahl und die Anpassung an den Transformator stehen verschiedene Phasenfolgen zur Verfügung. Standardmäßig gibt es den TCE-Kasten mit den Leiterkonfigurationen 3B, 4B und 5B. Andere Leiterkonfigurationen können im Bedarfsfall als SOND angefragt werden.

Tabelle 5- 5 Tabelle für 3-, 4- und 5-Leiter-Systeme

P1	P2	P3	P4	P5
L1	L2	L3	PEN(N)	(PE)
PEN(N)	L3	L2	L1	(PE)
L3	L2	L1	PEN(N)	(PE)
PEN(N)	L1	L2	L3	(PE)
L1	L2	PEN(N)	L3	(PE)
L3	PEN(N)	L2	L1	(PE)
L3	L2	PEN(N)	L1	(PE)
L1	PEN(N)	L2	L3	(PE)
L1	L2	L3	-	PE
L3	L2	L1	-	PE

Die Klammerwerte in der Tabelle gelten für das 5-Leiter-System

Phasenabstände

Für die Projektierung können Sie die Abstände (a, b, c) zwischen den Phasen (P1, P2, P3 und P4) innerhalb bestimmer Min.- und Max.-Werte beliebig wählen. Abstand c und Phase P4 entfallen bei 3B-. Lösung:

Bei der TCET-Version gibt es nur das Maß Fix2. Anstelle von Fix1 und Fix2 gibt es 2xFix2.

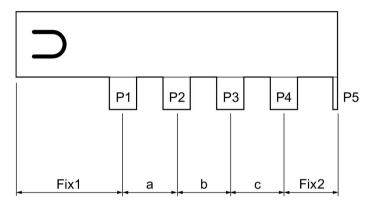


Bild 5-20 Phasenabstände

System	Fix1	Fix2	a /b (/c) min.	a /b (/c) max.
			4B, 5B (3B)	4B, 5B (3B)
LIA800, LIC1000	266	120	135	800 (1200)
LIA1000	278	132	160	800 (1200)
LIA1250, LIC1600	286	140	175	800 (1200)
LIA1600, LIA3200	306	160	215	800 (1200)
LIA2000, LIA4000	333	187	270	800 (1200)
LIA2500, LIA5000	368	222	340	800 (1200)
LIC1250	271	125	145	800 (1200)
LIC2000, LIC4000	301	155	205	800 (1200)
LIC2500, LIC5000	323	177	250	800 (1200)
LIC3200, LIC6300	361	215	325	800 (1200)

Maximal mögliche Gesamtlänge TCE-Version: L = a + b (+ c) + Fix1 + Fix2 = 3000 mmMaximal mögliche Gesamtlänge TCET-Version: $L = a + b (+ c) + 2 \times Fix2 = 3000 \text{ mm}$

Für folgende Systeme sind Transformator-Anschlüsse nur auf Anfrage erhältlich:

System mit Leiterkonfigurationen der Kennziffer 5C, 5G, 5H, 6B, 6C

Durch Ausrüstung mit einem Adapterrahmen kann das Anschluss-Stück an ein Verteiler- / Transformatorgehäuse angeflanscht werden.

5.4.6 Kabeleinspeisung

Wenn eine Einspeisung des Schienensystems über Kabel erforderlich ist, verwenden Sie die Kabeleinspeisung LI-....-CFE.

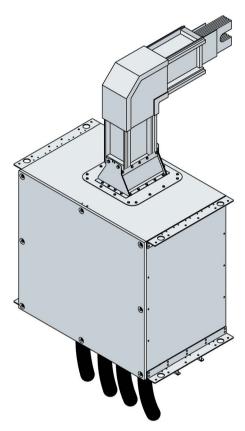


Bild 5-21 Kabeleinspeisung

Die Kabeleinspeisung ist für die Bemessungsströme 800 A bis 3200 A ausgelegt.

Gehäusegrößen

Abhängig vom System können Sie zwei Größen wählen:

Größe 1: LI-A.0800...-CFE.-..-H bis LI-A.1600...-CFE.-..-H

LI-C.1000...-CFE.-..-H bis LI-C.1600...-CFE.-..-H

Größe 2: LI-A.2000...-CFE.-..-H bis LI-A.2500...-CFE.-..-H

LI-C.2000...-CFE.-..-H bis LI-C.3200...-CFE.-..-H

Die maximalen Abmessungen betragen 1000 mm x 950 mm x 655 mm (B x H x T).

Sie können Einleiter- oder Mehrleiterkabel anschließen. Dabei können Sie Querschnitte bis 300 mm² (Bolzenanschluss) direkt an die Anschluss-Schienen der Kabeleinspeisung anschließen.

5.4 Leiterkonfiguration

Kabeleinführungen

Die Kabeleinspeisung können Sie entweder als Mehr- oder Einleiterausführung bestellen:

- Typ LI-...-CFE.MD-H mit Flanschplatte für Mehrleiterkabel (Stahlblechplatte mit Tüllen, inklusive Zugentlastungsschiene)
- Typ LI-...-CFE.-BD-H mit Flanschplatte für Einleiterkabel (Aluminium Blindplatte ohne Bohrungen)

5.4.7 Abgangskästen

5.4.7.1 Allgemeines

Tabelle 5- 6 Baugrößen / Schutz- und Schaltgeräte

Baugröße BG	Abgangskasten mit Leis- tungsschalter	Abgangskasten mit Sicherungslasttrenn- schalter	Abgangskasten mit Sicherungsunterteil	Abgangskasten mit Lasttrennschalter + Sicherung
	3VL	3NP	3NH	FSF
1	50 160 A ¹⁾	-	160 A	-
2	200 250 A	160 A	250 A	160 A
3	315 400 A	250 A	400 A	250 A
4	500 630 A (3VL5)	400 A	630 A	400 A
5	630 A (3VL6)	630 A	-	630 A
6	Auf Anfrage: 4 x 160 A	-	-	-
7	800 1250 A	-	-	-

¹⁾ Baugröße BG2 mit Wandlereinsatz und mit oder ohne Motorantrieb

Wandlereinsatz ist für die Baugrößen BG1 bis BG7, Motorantrieb ab Baugröße BG2 verfügbar.

Tabelle 5-7 Erlaubte Kombinationsmöglichkeit Abgangskasten / Stromschiene

Leiterkonfiguration		Abgangskasten	Bemerkung
Stromschiene		LITXX	
L1-L2-L3-PE _h	3B	3B	-
PEN-L1-L2-L3	4B	3B, 5H	Für TN-C-S-Netz wird zusätzlich eine PEN-Brücke benötigt.
N1-L1-L2-L3-PE _h	5B	3B, 5H	-
N2-N1-L1-L2-L3-PE _h	5C	3B, 5C, 5H	-
N1-L1-L2-L3-0,5 PE	5G	3B, 5H	-
N1-L1-L2-L3-PE	5H	3B, 5H	-
N1-L1-L2-L3-CPE-PE _h	6B	3B, 5H, 6B	-
N2-N1-L1-L2-L3-CPE-PE _h	6C	3B, 5H, 5C, 6B, 6C	-

h = housing / Gehäuse

5.4 Leiterkonfiguration

Eigenschaften der Abgangskästen

Für eine umfassende Energieverteilung stehen Abgangskästen in sieben Baugrößen zur Verfügung:

- Abgangskästen bis 160 A
- Abgangskästen für 250 A
- Abgangskästen für 400 A
- Abgangskästen für 630 A
- Abgangskästen für 800 bis 1250 A (auf Anfrage)

Die Bemessungsbetriebsspannung U_e beträgt 400 V. Unabhängig von der Einbaulage garantieren die geschlossenen Gehäuse die Schutzart IP55. Sie sind grundsätzlich bestückt mit:

- Sicherungsunterteilen, Sicherungslasttrennschalter, Lasttrennschalter mit Sicherungen oder Leistungsschalter mit Handgriff oder Motorantrieb
- Bolzen für den Kabelanschluss

Leiterkonfigurationen gemäß dem Typ Ll...-6.:

Für die Leitersysteme mit isoliert geführtem PE-Leiter sind die Abgangskästen mit einer zusätzlich separaten PE-Anschlussmöglichkeit ausgestattet.

Abgänge

- Energieabgriff über Abgangsstelle
- Verdrehschutz verhindert falsches Aufsetzen
- Berührschutz IP20 während des Aufsetzens auf die Abgangsstelle

Hinweis

Stecken unter Spannung

Gemäß DIN EN 50110-1 (VDE 0105-1) sind nationale Vorschriften grundsätzlich zu beachten. Abhängig von den landesspezifischen Vorschriften ist das Stecken unter Spannung ggf. nicht zulässig.

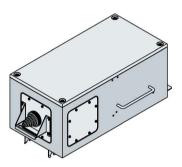
Kabeleinführung

Die Kabel können Sie wahlweise seitlich oder stirnseitig einführen. Integrierte Flansche mit Kabeltüllen stellen die Kabeleinführung für Mehrleiterkabel sicher. Für Einleiterkabel werden hierfür Aluminiumplatten eingesetzt, die Sie vor Ort mit Kabelverschraubungen versehen müssen. Bei der Auslieferung sind seitlich Blindplatten aus Stahl angebracht.

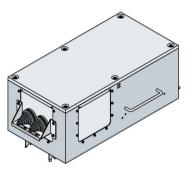
Sicherheit in der Bedienung

Zum Öffnen der Abgangskästen müssen Sie den Schalter zwangsweise durch Betätigung des Handgriffs oder beim Motorantrieb des Schalters ausschalten. Dadurch ist der Kabelanschlussraum spannungsfrei. Der Bereich des Kontaktapparats im vorderen Teil des Abgangskastens ist fingersicher ausgeführt.

Realisierung der Energieabgänge


Je nach Verwendung, Größe und Art der Verbraucher werden Energieabgänge unterschiedlicher Stromstärke benötigt. Realisiert werden diese Abgriffe über steckbare Abgangskästen bis 1250 A.

5.4.7.2 Abgangskästen mit Sicherungsunterteil bis 630 A


Bemessungsströme

Zur Auswahl stehen steckbare Abgangskästen in vier Baugrößen:

- Für 160 A
- Für 250 A
- Für 400 A
- Für 630 A

Abgangskasten mit Sicherungsunterteil bis 400 A

Abgangskasten mit Sicherungsunterteil bis 630 A

Kurzschlussfestigkeit

Bei Verwendung von Sicherungspatronen gemaß IEC-Norm beträgt der bedingte Bemessungskurzschluss-Strom der Abgangskästen 120 kA.

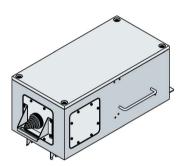
Bestückung

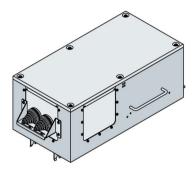
Die Sicherungsunterteile sind für Sicherungen gemäß IEC-Standard erhältlich. Sie sind 3-polig ausgeführt.

Kabelanschlüsse

Bolzen ermöglichen den Anschluss von Kabeln mit vorkonfektioniertem Kabelschuh. Für die kleine Baugröße beträgt der maximal anzuschließende Querschnitt pro Phase bis 150 mm², für die weiteren Baugrößen 2 x 120 mm² bis 1 x 240 mm².

Typenbezeichnung IEC


Die Typenbezeichnung des Abgangskastens mit Sicherungsunterteil bis 630 A lautet: LI-T-...-.-NH..


5.4.7.3 Abgangskästen mit Sicherungslasttrennschalter bis 630 A

Bemessungsströme

Zur Auswahl stehen steckbare Abgangskästen in vier Baugrößen:

- Für 160 A
- Für 250 A
- Für 400 A
- Für 630 A

Abgangskästen mit Sicherungslasttrennschalter bis 250 A und 400 bis 630 A

Kurzschlussfestigkeit

Bei Verwendung von Sicherungspatronen gemaß IEC-Norm beträgt der bedingte Bemessungskurzschluss-Strom der Abgangskästen 100 kA, bei BS-Standard: 80 kA.

Bestückung

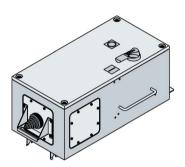
Die Sicherungslasttrennschalter sind für Sicherungen gemäß IEC- oder BS-Standard erhältlich. Sie können wahlweise 3-polig oder 4-polig ausgeführt werden.

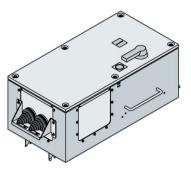
Kabelanschlüsse

Bolzen ermöglichen den Anschluss von Kabeln mit vorkonfektioniertem Kabelschuh. Für die kleine Baugröße beträgt der maximal anzuschließende Querschnitt pro Phase bis 150 mm², für die weiteren Baugrößen 2 x 120 mm² bis 1 x 240 mm².

Typenbezeichnung IEC / BS

Die Typenbezeichnung des Abgangskastens mit Sicherungslasttrennschalter bis 630 A lautet:


LI-T-....-3NP...


5.4.7.4 Abgangskästen mit Lasttrennschalter mit Sicherungen bis 630 A

Bemessungsströme

Zur Auswahl stehen steckbare Abgangskästen in vier Baugrößen:

- Für 160 A
- Für 250 A
- Für 400 A
- Für 630 A

Abgangskasten mit Lasttrennschalter mit Sicherungen bis 250 A und 400 A bis 630 A

Kurzschlussfestigkeit

Bei Verwendung von Sicherungspatronen gemaß IEC-Norm beträgt der bedingte Bemessungskurzschluss-Strom der Abgangskästen 100 kA, bei BS-Standard: 80 kA.

Bestückung

Die Lasttrennschalter mit Sicherungen sind für Sicherungen gemäß IEC- oder BS-Standard erhältlich. Sie können wahlweise 3-polig oder 4-polig ausgeführt werden.

Kabelanschlüsse

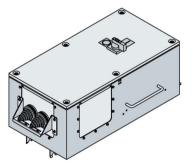
Bolzen ermöglichen den Anschluss von Kabeln mit vorkonfektioniertem Kabelschuh. Für die kleine Baugröße beträgt der maximal anzuschließende Querschnitt pro Phase bis 150 mm², für die weiteren Baugrößen 2 x 120 mm² bis 1 x 240 mm².

Typenbezeichnung IEC / BS

Die Typenbezeichnung des Abgangskastens mit Lasttrennschalter mit Sicherungen bis 630 A lautet:

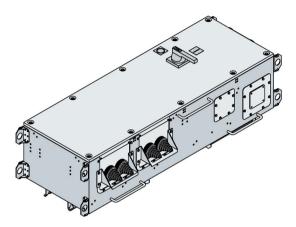

LI-T-....-FSF..

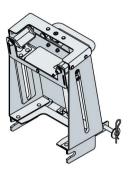
5.4.7.5 Abgangskästen mit Leistungsschalter bis 1250 A


Bemessungsströme

Zur Auswahl stehen die Abgangskästen bis 630 A in sechs Baugrößen:

- für 160 A
- Für 250 A
- Für 400 A
- Für 630 A
- Für 800 A
- Für 1250 A


Abgangskasten mit Leistungsschalter bis 400 A



Abgangskasten mit Leistungsschalter bis 630 A

Abgangskästen mit Leistungsschalter von 800 A bis 1250 A

Die Abgangskästen haben eine einheitliche Baugröße für 800 A, 1000 A und 1250 A. Sie werden auf spezielle Schienenkästen LI-.....-LTB aufgesetzt und an der Abgangsstelle mit einem Bolzen verschraubt. Für diese Abgangskästen gibt es eine Aufsetzhilfe.

Aufsetzhilfe

Abgangskasten von 800 A bis 1250 A

Kurzschlussfestigkeit

Wenn Sie Leistungsschalter verwenden, beträgt der bedingte Bemessungskurzschluss-Strom der Abgangskästen mit Schaltvermögen N 55 kA, mit Schaltvermögen H 77 kA und mit Schaltvermögen L 110 kA.

Bestückung

Die Leistungsschalter besitzen das Schaltvermögen N, H und L. Sie können wahlweise 3-polig oder 4-polig ausgeführt werden.

Kabelanschluss

Bolzen ermöglichen den Anschluss von Kabeln mit vorkonfektioniertem Kabelschuh. Für die kleine Baugröße beträgt der maximal anzuschließende Querschnitt pro Phase bis 150 mm², für die mittlere Baugröße bis 240 mm² und für die große Baugröße bis 4 x 240 mm².

Typenbezeichnung

Die Typenbezeichnung für die Abgangskästen mit Leistungsschalter lautet:

LI-T....-3VL...

5.4.7.6 Leerabgangskästen bis 630 A

Neben den bestückten Abgangskästen stehen Leerabgangskästen zur Verfügung. Diese Leerabgangskästen kann der Käufer eigenverantwortlich ausbauen und final bestücken (einschließlich Auswahl der Einbaugeräte). Beachten Sie die Hinweise und Anweisungen der Firma Siemens als Hersteller des Leerabgangskastens.

Hinweis

Verfügbarkeit

Leerabgangskästen stehen nur für bestimmte Länder zur Verfügung. Weitere Angaben dazu erhalten Sie auf Anfrage.

Ausführungen

Folgende Ausführungen stehen zur Verfügung:

- Vorbereitet für den Einbau der SENTRON Kompaktleistungsschalter 3VL
- Für freie Bestückung

Wichtige Hinweise zu den Abgangskästen, vorbereitet für den Einbau der SENTRON Kompaktleistungsschalter 3VL, und für die freie Bestückung finden Sie in dem Kapitel "Hinweise zu Leerabgangskästen bis 630 A (Seite 274)".

5.4.8 Zusatzausrüstung

Endkappe

Wenn ein Schienenstrang in keinen weiteren Verteilerschrank einspeist, müssen Sie am Strangende eine Endkappe einbauen.

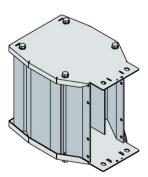


Bild 5-22 Endkappe

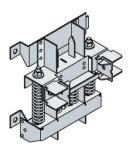
Befestigungsbügel für horizontale Installation

Verschiedene U-Profile und Klemmbügel stehen zur Verfügung:

- Typ LI-Z-BH. U-Profile
- Typ LI-Z-BKK. Klemmbügel flexibel
- Typ LI-Z-BKF. Klemmbügel Festpunkt

Zwei Klemmbügel des Typs LI-Z-BK... führen den Schienenverteiler auf den Trageprofilen LI-Z-BH.

Klemmbügel fexibel LI-Z-BKK.


Klemmbügel Festpunkt LI-Z-BKF.

Befestigungsbügel für vertikale Installation

Für die Installation vertikaler Strangverläufe ist die Verwendung spezieller Federbügel und Festpunktbügel notwendig.

Typ LI-Z-BVFB-.. Federbügel
Typ LI-Z-BVFB-.. Festpunktbügel

Die Typenauswahl ist gewichts- und abstandsabhängig.

Federbügel LI-Z-BV-..

Wandbefestigung Festpunktbügel LI-Z-BVFP-..

5.5.1 LI allgemein

	LI
Normen und Bestimmungen	IEC 61439-1 und -6, DIN EN 61439-1 und -6
Klimafestigkeit	
Feuchte Wärme, konstant, nach IEC 60068-2-78	40 °C / 93 % RH / 56d
Feuchte Wärme, zyklisch, nach IEC 60068-2-30	56 x (25 40 °C / 3 h; 40 °C / 9 h; 40 25 °C / 3 6 h; 25 °C / 6 h) / 95 % RH
Kälte nach IEC 60068-2-1	-45 °C, 16 h
Temperaturwechsel nach IEC 60068-2-14	-45 55 °C; 5 Zyklen (1 °C / min); Haltezeit min. 30 min
Salznebelprüfung nach IEC 60068-2-52	Schärfegrad 3
Eisbildung nach IEC 60068-2-61	Zusammengesetzte Prüfung aus Feuchte Wärme, zyklisch + Kälte
Umweltklassen nach IEC 60721	
wurden durch Prüfungen aus der Klimafestigkeit abgeleitet	
Klimatisch:	1K5 (Lagerung) = 3K7L (Betrieb ohne Sonneneinstrahlung); 2K2 (Transport)
Chemisch aktiv	Salznebel, weitere Schadstoffe optional,
	1C2 (Lagerung) = 3C2 (Betrieb) = 2C2 (Transport)
Biologisch	Wird durch IP-Schutzarten und Verpackungsart abgedeckt.
	1B2 (Lagerung) = 3B2 (Betrieb) = 2B2 (Transport)
Mechanisch aktiv	Wird durch IP-Schutzarten und Verpackungsart abgedeckt.
	1S2 (Lagerung) = 3S2 (Betrieb) = 2S2 (Transport)
Umgebungstemperatur*	
Alle Lagen	-5 / +40 / +35 (min. / max. / 24-h-Mittel)
Schutzart	IP55
	n 50 ± 5
(Bei Wiederverwendung)	
Oberflächenbehandlung bei Stromschienen	Über die Gesamtlänge isoliert
	Aluminium vernickelt und verzinnt an Stromübergängen
	Kupfer verzinnt an Stromübergängen
	Stromübergänge an den Abgangsstellen versilbert
Werkstoff Schienenkästen	Lackierte Aluminiumkapselung
Farbe Schienenkästen	RAL 7035 (Lichtgrau)
Abmessungen	Kapitel "Maßzeichnungen (Seite 216)"
	/ 1000
Schienenkästen nach IEC 61439-1	
Überspannungskategorie / Verschmutzungsgrad	III/3 nach EN 60947

		Ll	
Bemessungsspannung U_{e}			
Bei Energietransport	AC	V 1000	
Bei Energieverteilung	AC	V 690	
Bemessungsfrequenz		Hz 50 / 60	

^{*} Beachten Sie die Deratingfaktoren bei hohen Umgebungstemperaturen.

Temperaturverhalten

Umgebungstemperatur im 24-h-Mittel	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C
Umrechnungsfaktor alle Einbaulagen 1)	1,075	1,05	1,025	1	0,95	0,9	0,85

¹⁾ Frequenz 50 Hz; bei 60 Hz ist für Ströme > 800 A gemäß IEC 61439 eine Reduzierung auf 95 % zu berücksichtigen

5.5.2 Schienenkästen LI-A.. (4-polig aus Aluminium)

Systemabhängige Daten			LI-A.	0800	1000	1250	1600	2000
Bemessungsstrom		I nA	Α	800	1000	1250	1600	2000
Impedanzbelag der Strombahnen								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,090	0,063	0,053	0,037	0,027
Schienentemperatur								
Bei 50 Hz und Enderwärmung der	Wirkwiderstandsbelag	R ₁	mΩ/m	0,125	0,088	0,074	0,052	0,038
Schienen	Blindwiderstandsbelag	X_1	mΩ/m	0,021	0,016	0,014	0,010	0,008
	Impedanzbelag	Z_1	mΩ/m	0,127	0,089	0,075	0,053	0,038
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,127	0,096	0,083	0,062	0,047
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,045	0,035	0,030	0,023	0,016
für 4-polige Systeme im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,134	0,102	0,088	0,066	0,050
Impedanzbelag des PE-Pfades als re	iner Rückleiter							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,045	0,042	0,041	0,039	0,034
Schienentemperatur								
Nullimpedanz								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,202	0,163	0,143	0,112	0,088
Schienentemperatur	Blindwiderstandsbelag	X_{0_b20}	mΩ/m	0,102	0,078	0,069	0,051	0,039
für 4-polige Systeme nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,226	0,181	0,158	0,123	0,096
Kurzschlussfestigkeit								
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	35	50	60	65	80
Bemessungsstoßstromfestigkeit	Scheitelwert	/ pk	kA	74	105	132	143	176
Leitermaterial			Aluminiu	m				
Anzahl der Schienen	-	-	-	4	4	4	4	4
Leiterquerschnitt	L1, L2, L3, PEN	Α	mm²	350	499	599	849	1185
Gewichte	-	-	Kg/m	12,2	14,1	15,4	18,5	22,8

Systemabhängige Daten			LI-A.	2500	3200	4000	5000
Bemessungsstrom	-	/ nA	Α	2500	3200	4000	5000
Impedanzbelag der Strombahnen							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,020	0,019	0,013	0,010
Schienentemperatur							
Bei 50 Hz und Enderwärmung der	Wirkwiderstandsbelag	R ₁	mΩ/m	0,027	0,026	0,018	0,013
Schienen	Blindwiderstandsbelag	X_1	mΩ/m	0,006	0,005	0,004	0,003
	Impedanzbelag	Z_1	mΩ/m	0,028	0,027	0,018	0,014
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,035	0,032	0,024	0,018
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,012	0,012	0,009	0,006
für 4-polige Systeme im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,037	0,034	0,026	0,019
Impedanzbelag des PE-Pfades als re	iner Rückleiter						
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,032	0,021	0,019	0,015
Schienentemperatur							
Nullimpedanz							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,067	0,058	0,046	0,035
Schienentemperatur	Blindwiderstandsbelag	X_{0_b20}	mΩ/m	0,030	0,039	0,018	0,015
für 4-polige Systeme nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,074	0,070	0,049	0,038
Kurzschlussfestigkeit							
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ _{cw}	kA	100	120	150	150
Bemessungsstoßstromfestigkeit	Scheitelwert	/ pk	kA	220	264	330	330
Leitermaterial			Aluminium				
Anzahl Schienen	-	-	-	4	8	8	8
Leiterquerschnitt	L1, L2, L3, PEN	А	mm ²	1652	1699	2370	3304
Gewichte	-	-	kg/m	28,8	37,1	45,7	57,5

5.5.3 Schienenkästen LI-A.. (5-polig, Aluminium)

Systemabhängige Daten			LI-A.	0800	1000	1250	1600	2000
Bemessungsstrom	-	/ _{nA}	A	800	1000	1250	1600	2000
Impedanzbelag der Strombahnen		-101						
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,090	0,063	0,053	0,037	0,027
Schienentemperatur	_							
Bei 50 Hz und Enderwärmung der	Wirkwiderstandsbelag	R ₁	mΩ/m	0,125	0,088	0,074	0,052	0,038
Schienen	Blindwiderstandsbelag	X ₁	mΩ/m	0,021	0,016	0,014	0,010	0,008
	Impedanzbelag	Z ₁	mΩ/m	0,127	0,089	0,075	0,053	0,038
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,136	0,106	0,095	0,076	0,061
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,053	0,044	0,039	0,031	0,024
für 5-polige Systeme (PE) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,146	0,115	0,102	0,082	0,066
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,190	0,134	0,113	0,081	0,058
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,052	0,043	0,033	0,025	0,019
für 5-polige Systeme (N) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,197	0,141	0,117	0,084	0,061
Impedanzbelag des PE-Pfades als reine	r Rückleiter							
Bei 50 Hz und +20 °C Schienentemperatur	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,045	0,042	0,041	0,039	0,034
Nullimpedanz								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,229	0,192	0,179	0,154	0,129
Schienentemperatur	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,126	0,108	0,096	0,078	0,060
für 5-polige Systeme (PE) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,262	0,220	0,203	0,173	0,142
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,387	0,273	0,231	0,165	0,120
Schienentemperatur	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,117	0,096	0,075	0,054	0,048
für 5-polige Systeme (N) nach	Impedanzbelag	Z _{0_b20}	mΩ/m	0,404	0,289	0,243	0,174	0,129
DIN EN 60909-0 / VDE 0102								
Kurzschlussfestigkeit								
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	35	50	60	65	80
Bemessungsstromfestigkeit	Scheitelwert	/ pk	kA	74	105	132	143	176
Leitermaterial			Aluminiu	ım				
Anzahl der Schienen	-	-	-	4	4	4	4	4
Leiterquerschnitt	L1, L2, L3, N	Α	mm ²	350	499	599	849	1185
Gewichte	-	-	kg/m	12,2	14,1	15,4	18,5	22,8

Systemabhängige Daten			LI-A.	2500	3200	4000	5000
Bemessungsstrom	-	/ nA	Α	2500	3200	4000	5000
Impedanzbelag der Strombahnen							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,020	0,019	0,013	0,010
Schienentemperatur							
Bei 50 Hz und Enderwärmung	Wirkwiderstandsbelag	R ₁	mΩ/m	0,027	0,026	0,018	0,013
der Schienen	Blindwiderstandsbelag	X ₁	mΩ/m	0,006	0,005	0,004	0,003
	Impedanzbelag	Z_1	mΩ/m	0,028	0,027	0,018	0,014
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,052	0,039	0,033	0,025
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X_{b20}	mΩ/m	0,018	0,016	0,012	0,007
(PE) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,055	0,042	0,035	0,026
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,042	0,040	0,029	0,021
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X_{b20}	mΩ/m	0,013	0,014	0,009	0,008
(N) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z _{b20}	mΩ/m	0,044	0,042	0,030	0,022
Impedanzbelag des PE-Pfades als reiner R	ückleiter						
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,032	0,021	0,019	0,015
Schienentemperatur							
Nullimpedanz							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,116	0,080	0,073	0,055
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,045	0,039	0,030	0,033
(PE) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z_{0_b20}	mΩ/m	0,124	0,089	0,079	0,064
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,087	0,081	0,060	0,042
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X_{0_b20}	mΩ/m	0,030	0,030	0,018	0,018
(N) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z_{0_b20}	mΩ/m	0,092	0,086	3200 4000 5 0,019 0,013 0 0,026 0,018 0 0,005 0,004 0 0,027 0,018 0 0,039 0,033 0 0,016 0,012 0 0,042 0,035 0 0,040 0,029 0 0,041 0,009 0 0,042 0,030 0 0,042 0,030 0 0,039 0,030 0 0,039 0,030 0 0,089 0,079 0 0,081 0,060 0 0,081 0,060 0 0,030 0,018 0 0,086 0,063 0 120 150 1 264 330 3	0,046
Kurzschlussfestigkeit							
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	100	120	150	150
Bemessungsstromfestigkeit	Scheitelwert	/ pk	kA	220	264	330	330
Leitermaterial			Aluminiur	n			
Anzahl der Schienen	-	-	-	4	8	8	8
Leiterquerschnitt	L1, L2, L3, N	Α	mm²	1652	1699	2370	3304
Gewichte	-	-	kg/m	28,8	37,1	45,7	57,5

5.5.4 Schienenkästen LI-C.. (4-polig, Kupfer)

Systemabhängige Daten			LI-C.	1000	1250	1600	2000	2500
Bemessungsstrom	-	/ _{nA}	Α	1000	1250	1600	2000	2500
Impedanzbelag der Strombahnen								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,053	0,047	0,031	0,024	0,018
Schienentemperatur								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₁	mΩ/m	0,074	0,065	0,044	0,034	0,025
Schienentemperatur	Blindwiderstandsbelag	X ₁	mΩ/m	0,021	0,019	0,012	0,010	0,008
	Impedanzbelag	Z ₁	mΩ/m	0,077	0,068	0,045	0,035	0,026
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,086	0,079	0,056	0,045	0,035
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,041	0,037	0,028	0,022	0,017
für 4-polige Systeme im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,096	0,087	0,062	0,050	0,039
Impedanzbelag des PE-Pfades als reine	r Rückleiter							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,047	0,046	0,041	0,039	0,036
Schienentemperatur								
Nullimpedanz								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,154	0,144	0,106	0,088	0,069
Schienentemperatur	Blindwiderstandsbelag	X_{0_b20}	mΩ/m	0,090	0,084	0,060	0,048	0,036
für 4-polige Systeme nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,179	0,167	0,122	0,100	0,078
Kurzschlussfestigkeit								
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	43	60	65	80	100
Bemessungsstoßstromfestigkeit	Scheitelwert	/ pk	kA	90	132	143	176	220
Leitermaterial			Kupfe	r				
Anzahl der Schienen	-	-	-	4	4	4	4	4
Leiterquerschnitt	L1, L2, L3, PEN	Α	mm²	328	397	562	795	1068
Gewichte	-	-	kg/m	20,4	23,0	29,4	38,4	48,9

Systemabhängige Daten			LI-C	3200	4000	5000	6300
Bemessungsstrom	-	/ nA	Α	3200	4000	5000	6300
Impedanzbelag der Strombahnen							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,012	0,012	0,009	0,006
Schienentemperatur							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₁	mΩ/m	0,017	0,017	0,012	0,009
Schienentemperatur	Blindwiderstandsbelag	X ₁	mΩ/m	0,006	0,005	0,004	0,003
	Impedanzbelag	Z ₁	mΩ/m	0,018	0,017	0,013	0,009
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,025	0,023	0,018	0,014
Schienentemperatur für 4-polige Systeme	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,012	0,011	0,008	0,006
im Fehlerfall nach EN 61439-6	Impedanzbelag	Z _{b20}	mΩ/m	0,028	0,025	0,020	0,015
Impedanzbelag des PE-Pfades als reiner R	ückleiter						
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,033	0,020	0,019	0,017
Schienentemperatur							
Nullimpedanz							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,051	0,045	0,036	0,029
Schienentemperatur für 4-polige Systeme	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,027	0,024	0,021	0,012
nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,058	0,051	0,042	0,031
Kurzschlussfestigkeit							
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	100	150	150	150
Bemessungsstoßstromfestigkeit	Scheitelwert	/ pk	kA	220	330	330	330
Leitermaterial			Kupfer				
Anzahl der Schienen	-	-	-	4	8	8	8
Leiterquerschnitt	L1, L2, L3, PEN	Α	mm²	1537	1589	2135	3073
Gewichte	-	-	kg/m	67,0	76,2	97,3	133,4

5.5.5 Schienenkästen LI-C.. (5-polig, Kupfer)

Systemabhängige Daten			LI-C.	1000	1250	1600	2000	2500
Bemessungsstrom	-	I nA	Α	1000	1250	1600	2000	2500
Impedanzbelag der Strombahnen								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,053	0,047	0,031	0,024	0,018
Schienentemperatur								
Bei 50 Hz und Enderwärmung der	Wirkwiderstandsbelag	R ₁	mΩ/m	0,074	0,065	0,044	0,034	0,025
Schienen	Blindwiderstandsbelag	X ₁	mΩ/m	0,021	0,019	0,012	0,010	0,008
	Impedanzbelag	Z_1	mΩ/m	0,077	0,068	0,045	0,035	0,026
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,101	0,093	0,073	0,063	0,054
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,050	0,047	0,038	0,030	0,024
für 5-polige Systeme (PE) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,112	0,104	0,082	0,070	0,059
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,116	0,103	0,069	0,053	0,040
Schienentemperatur	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,047	0,047	0,030	0,024	0,021
für 5-polige Systeme (N) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,126	0,114	0,076	0,058	0,045
Impedanzbelag des PE-Pfades als reine	r Rückleiter							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,047	0,046	0,041	0,039	0,036
Schienentemperatur								
Nullimpedanz								
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,196	0,185	0,156	0,140	0,127
Schienentemperatur	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,123	0,120	0,093	0,078	0,063
für 5-polige Systeme (PE) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,231	0,221	0,181	0,160	0,142
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,240	0,213	0,144	0,111	0,084
Schienentemperatur	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,108	0,105	0,066	0,051	0,045
für 5-polige Systeme (N) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,263	0,237	0,158	0,122	0,095
Kurzschlussfestigkeit								
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	43	60	65	80	100
Bemessungsstoßstromfestigkeit	Scheitelwert	/ pk	kA	90	132	143	176	220
Leitermaterial			Kupfer					
Anzahl der Schienen	-	-	-	4	4	4	4	4
Leiterquerschnitt	L1, L2, L3, N	Α	mm²	328	397	562	795	1068
Gewichte	-	-	kg/m	20,4	23,0	29,4	38,4	48,9

Systemabhängige Daten			LI-C.	3200	4000	5000	6300
Bemessungsstrom	-	-	I _{nA}	3200	400	5000	6300
Impedanzbelag der Strombahnen							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	mΩ/m	0,012	0,012	0,009	0,006
Schienentemperatur							
Bei 50 Hz und Enderwärmung	Wirkwiderstandsbelag	R ₁	mΩ/m	0,017	0,017	0,012	0,009
der Schienen	Blindwiderstandsbelag	X ₁	mΩ/m	0,006	0,005	0,004	0,003
	Impedanzbelag	Z_1	mΩ/m	0,018	0,017	0,013	0,009
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,045	0,032	0,028	0,023
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X _{b20}	mΩ/m	0,017	0,016	0,012	0,009
(PE) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,049	0,036	0,030	0,025
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{b20}	mΩ/m	0,028	0,027	0,021	0,014
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X_{b20}	mΩ/m	0,014	0,014	0,011	0,008
(N) im Fehlerfall nach EN 61439-6	Impedanzbelag	Z_{b20}	mΩ/m	0,031	0,030	0,023	0,016
Impedanzbelag des PE-Pfades als reiner R	Rückleiter						
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R ₂₀	$m\Omega/m$	0,033	0,020	0,019	0,017
Schienentemperatur							
Nullimpedanz							
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,111	0,072	0,066	0,056
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,045	0,042	0,033	0,024
(PE) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,120	0,083	0,073	0,061
Bei 50 Hz und +20 °C	Wirkwiderstandsbelag	R _{0_b20}	mΩ/m	0,060	0,054	0,042	0,030
Schienentemperatur für 5-polige Systeme	Blindwiderstandsbelag	X _{0_b20}	mΩ/m	0,033	0,030	0,024	0,015
(N) nach DIN EN 60909-0 / VDE 0102	Impedanzbelag	Z _{0_b20}	mΩ/m	0,068	0,062	0,048	0,034
Kurzschlussfestigkeit							
Bemessungskurzzeitstromfestigkeit	Effektivwert t = 1 s	/ cw	kA	100	150	150	150
Bemessungsstoßstromfestigkeit	Scheitelwert	/ pk	kA	220	330	330	330
Leitermaterial			Kupfer				
Anzahl der Schienen	-	-	-	4	8	8	8
Leiterquerschnitt	L1, L2, L3, N	Α	mm²	1537	1589	2135	3073

5.5.6 Brandlast für Schienenkästen ohne Abgangstellen

System	Brandlast [kWh / m]	
LI-A.800	2,37	
LI-A.1000	2,80	
LI-C.1000	2,37	
LI-A.1250	3,12	
LI-C.1250	2,56	
LI-A.1600	3,73	
LI-C.1600	3,06	
LI-A.2000	4,81	
LI-C.2000	3,57	
LI-A.2500	6,03	
LI-C.2500	4,43	
LI-A.3200	7,46	
LI-C.3200	5,76	
LI-A.4000	9,62	
LI-C.4000	7,40	
LI-A.5000	12,06	
LI-C.5000	8,85	
LI-C.6300	11,07	

Hinweis

Schienenkästen mit Abgangsstellen

Unabhängig von der Systemgröße ist für jede Abgangsstelle eine Brandlast von 0,98 kWh zu berücksichtigen.

Brandlastwerte für andere Leiterkonfigurationen erhalten Sie auf Anfrage.

5.5.7 Befestigungsabstände

Tabelle 5- 8 Befestigungsabstände [m] für übliche mechanische Belastung bei horizontaler Installation

System	Schienenlage hochkant	Schienenlage flach
LI-A.800	3	2
LI-A.1000	3	2
LI-C.1000		
LI-A.1250	3	2
LI-C.1250		
LI-A.1600	3	2
LI-C.1600		
LI-A.2000	3	2
LI-C.2000		
LI-A.2500	3	2
LI-C.2500		
LI-A.3200	3	2
LI-C.3200		
LI-A.4000	3	2
LI-C.4000		
LI-A.5000	3	2
LI-C.5000		
LI-C.6300	3	2

5.5.8 Fremdverteileranschluss-Stücke

Tabelle 5- 9 Erforderliche Anschlussquerschnitte für blanke Kupferschienen zum Anschluss an Fremdverteiler-Anschluss-Stücke

System1)	InA [A]	Anzahl Kupfe	Anzahl Kupferschienen Breite x Dicke							
		Breite x Dick								
		1 2			4	LI-A / LI-C				
LI-A.0800	800	60 x 10	30 x 10	20 x 10	-	LI-A.0800				
LI-C.1000	1000	60 x 10	30 x 10	20 x 10	-	LI-C.1000				
LI-A.1000	1000	80 x 10	40 x 10	30 x 10	-	LI-A.1000				
LI-C.1250	1250	80 x 10	40 x 10	30 x 10	-	LI-C.1250				
LI-A.1250	1250	100 x 10	60 x 10	30 x 10	-	LI-A.1250				
LI-C.1600	1600	100 x 10	60 x 10	30 x 10	-	LI-C.1600				
LI-A.1600	1600	100 x 10	60 x 10	30 x 10	-	LI-A.1600				
LI-C.2000	2000	160 x 10	80 x 10	50 x 10	-	LI-C.2000				
LI-A.2000	2000	200 x 10	100 x 10	60 x 10	50 x 10	LI-A.2000				
LI-C.2500	2500	200 x 10	100 x 10	60 x 10	50 x 10	LI-C.2500				
LI-A.2500	2500	-	160 x 10	100 x 10	80 x 10	LI-A.2500				
LI-C.3200	3200	-	160 x 10	100 x 10	80 x 10	LI-C.3200				
LI-A.3200	3200	-	200 x 10	120 x 10	100 x 10 ¹⁾	LI-A.3200				
LI-C.4000	4000	-	200 x 10	120 x 10	100 x 10 ¹⁾	LI-C.4000				
LI-A.4000	4000	-	-	200 x 10	160 x 10	LI-A.4000				
LI-C.5000	5000	-	-	200 x 10	160 x 10	LI-C.5000				
LI-A.5000	5000	-	-	200 x 10	160 x 10	LI-A.5000				
LI-C.6300	6300	-	-	200 x 10	160 x 10	LI-C.6300				

Gemäß DIN 43671, Tabelle 1 beträgt für diesen Anschlussquerschnitt für blanke Kupferschienen der maximale Dauerstromwert 3980 A

5.5.9 Abgangskästen

			LI
Normen und Bestimmungen			IEC 61439-1 / DIN EN 61439-1
			IEC 61439-1 / DIN EN 61439-6
Klimafestigkeit			Feuchte Wärme, konstant, nach IEC 60068-2-78
			Feuchte Wärme, zyklisch, nach IEC 60068-2-30
Umgebungstemperatur		°C	-5 / +40 / +35 (min. / max. 24-h-Mittel)
Schutzart			IP55
Werkstoff Schienenkästen			Stahlblech, lackiert
Farbe Abgangskästen			RAL 7035 (Lichtgrau)
Abmessungen			Kapitel "Abgangskästen (Seite 222)"
Bemessungsisolationsspannung U_i	AC	V	690
Überspannungskategorie / Verschmutzungsgrad			III/3 nach DIN EN 60947-1 / VDE 0660-100
Bemessungsbetriebsspannung \mathcal{U}_{e}	AC	V	400
Bemessungsfrequenz		Hz	50

Abgangskästen mit Leistungsschalter

Systemabhängige Daten		3VL1	3VL2	3VL3
Bemessungsstrom Inc	Α	50, 63, 80, 100, 125, 160	50, 63, 80, 100, 125, 160	200, 250
Max. zulässiger Betriebsstrom /nc	Α	40, 50, 63, 80, 100, 130	50, 63, 80, 100, 125, 160 ¹⁾	185, 230
Bedingter Bemessungskurzschluss- Strom /cc	kA	55	55	55
Schaltvermögen N				
Bedingter Bemessungskurzschluss- Strom <i>l</i> _{cc}	kA	70	70	70
Schaltvermögen H				
Bedingter Bemessungskurzschluss- Strom <i>I</i> _{cc}	kA	-	100	100
Schaltvermögen L				
Anschließbare Querschnitte (Kupfer)				
L1, L2, L3	mm ²	1 x 50 150	1 x 50 150	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120
N, PE, ISO-PE	$\rm mm^2$	1 x 50 150	1 x 50 150	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120
Bolzenanschluss		M8	M8	M8
Kabeleinführung				
stirnseitig		ja	ja	ja
seitlich		ja	ja	ja
Mehrleiterkabel				
Kabeltüllen		KT4	KT4	KT4
Kabeldurchmesser	mm	14 68	14 68	14 68
Einleiterkabel ²⁾				
AL-Platte, ungebohrt		7 x M32	7 x M40	7 x M40
Gewichte	kg	20	20	40

¹⁾ Max. zulässiger Betriebsstrom /nc für Systemeinbaulage horizontal mit Abgangskasten oben; alle anderen Lagen 155 A

²⁾ Kabelverschraubungen mit Zugentlastung sind erforderlich (nicht im Lieferumfang enthalten)

Systemabhängige Daten		3VL4	3VL5	3VL6	3VL7	3VL8
Bemessungsstrom Inc	Α	315, 400	500, 630	630	800	1250
Max. zulässiger Betriebsstrom Inc	Α	285, 365	375, 475	600	800	1130
Bedingter Bemessungskurz- schluss-Strom /cc	kA	55	55	55	55	55
Schaltvermögen N						
Bedingter Bemessungskurz- schluss-Strom <i>l</i> _{cc}	kA	70	70	70	70	70
Schaltvermögen H						
Bedingter Bemessungskurz- schluss-Strom /cc	kA	100	100	100	100	100
Schaltvermögen L						
Anschließbare Querschnitte (Kupfe	er)					
L1, L2, L3	mm²	1 x 95 240	1 x 95 240	1 x 95 240	1 x 95 300	1 x 95 300
		2 x 95 120	2 x 95 120	2 x 95 120	4 x 95 300	4 x 95 300
N, PE, ISO-PE	$\mathrm{mm^2}$	1 x 95 240	1 x 95 240	1 x 95 240	1 x 95 300	1 x 95 300
		2 x 95 120	2 x 95 120	2 x 95 120	4 x 95 300	4 x 95 300
Bolzenanschluss		M10	M10	M10	M12	M12
Kabeleinführung						
stirnseitig		ja	ja	ja	ja	ja
seitlich		ja	ja	ja	ja	ja
Mehrleiterkabel						
Kabeltüllen		2 x KT4	2 x KT4	2 x KT4	4 x KT4	4 x KT4
Kabeldurchmesser	mm	14 68	14 68	14 68	14 68	14 68
Einleiterkabel ¹⁾						
AL-Platte, ungebohrt		7 x M50	14 x M50	14 x M50	2x14 x M50	2x14 x M50
Gewichte	kg	60	80	90	150	150

¹⁾ Kabelverschraubungen mit Zugentlastung sind erforderlich (nicht im Lieferumfang enthalten)

Abgangskästen mit Sicherungsunterteilen

Systemabhängige Daten		NH00	NH1	NH2	NH3
Bemessungsstrom /nc	Α	160	250	400	630
Max. Bemessungsstrom I _{max} der Sicherung	Α	160	250	400	630
Max. zulässiger Betriebsstrom /nc	Α	160	250	385	520 ¹⁾
Bedingter Bemessungskurzschluss- Strom bei Schutz durch Sicherungen ²⁾	kA	120	120	120	120
Anschließbare Querschnitte (Kupfer)					
L1, L2, L3	mm ²	1 x 50 150	1 x 50 150	1 x 95 240	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120	2 x 95 120
N, PE, ISO-PE	mm²	1 x 50 150	1 x 50 150	1 x 95 240	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120	2 x 95 120
Bolzenanschluss		M8	M10	M10	M10
Kabeleinführung					
stirnseitig		ja	ja	ja	ja
seitlich		ja	ja	ja	ja
Mehrleiterkabel					
Kabeltüllen		KT4	KT4	2 x KT4	2 x KT4
Kabeldurchmesser	mm	14 68	14 68	14 68	14 68
Einleiterkabel ³⁾					
AL-Platte, ungebohrt		10 x M50	10 x M50	10 x M50	10 x M50
Gewichte	kg	20	40	60	80

 $^{^{1)}}$ Max. zulässiger Betriebsstrom $I_{\rm nc}$ für Systemeinbaulage vertikal 475 A

²⁾ Sicherungen: IEC 269-1-2, NF EN 60269, NFC 63210, VDE 0636-1, DIN 4360

³⁾ Kabelverschraubungen mit Zugentlastung sind erforderlich (nicht im Lieferumfang enthalten)

Abgangskästen mit Sicherungslasttrennschalter

Systemabhängige Daten		FSF160	FSF250	FSF400	FSF630
Sicherungseinsatz NH		NH00	NH1	NH2	NH3
Bemessungsstrom Inc	Α	160	250	400	630
Max. Bemessungsstrom I _{max} der Sicherungen	Α	160	250	400	630
Max. zulässiger Betriebsstrom Inc	Α	1301)	250	320	485 ²⁾
Bedingter Bemessungskurzschluss- Strom bei Schutz durch Sicherungen ³⁾	kA	100 (80)	100 (80)	100 (80)	100 (80)
Anschließbare Querschnitte (Kupfer)					
L1, L2, L3	mm ²	1 x 50 150	1 x 50 150	1 x 95 240	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120	2 x 95 120
N, PE, ISO-PE	mm²	1 x 50 150	1 x 50 150	1 x 95 240	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120	2 x 95 120
Bolzenanschluss		M8	M10	M10	M10
Kabeleinführung					
stirnseitig		ja	ja	ja	ja
seitlich		ja	ja	ja	ja
Mehrleiterkabel					
Kabeltüllen		KT4	KT4	2 x KT4	2 x KT4
Kabeldurchmesser	mm	14 68	14 68	14 68	14 68
Einleiterkabel ⁴⁾					
AL-Platte, ungebohrt		10 x M50	10 x M50	10 x M50	10 x M50
Gewichte ⁵⁾	kg	40 (60)	60 (80)	80 (90)	90

¹⁾ Max. zulässiger Betriebsstrom /nc für Systemeinbaulage horizontal Abgangskasten oben; alle anderen Lagen 125 A

²⁾ Max. zulässiger Betriebsstrom Inc für Systemeinbaulage horizontal Abgangskasten oben, alle anderen Lagen 465 A

³⁾ Sicherungen IEC 269-1-2, NF EN 60269-1, NFC 63211, NFC 63210, VDE 0636-1, DIN 43620; die Klammerwerte gelten für den Einsatz von Sicherungen gemäß BS Standard.

⁴⁾ Kabelverschraubungen mit Zugentlastung sind erforderlich (nicht im Lieferumfang enthalten)

⁵⁾ Die Klammerwerte gelten für den Einsatz von Sicherungen gemäß BS Standard.

Abgangskästen Lasttrennschalter mit Sicherungsunterteilen

		3NP1133	3NP1143	3NP1153	3NP1163
Sicherungseinsatz NH		NH00	NH1	NH2	NH3
Bemessungsstrom Inc	Α	160	250	400	630
Max. Bemessungsstrom I_{max} der Sicherungen	Α	160	250	400	630
Max. zulässiger Betriebsstrom /nc	Α	160	225	340	460
Bedingter Bemessungskurzschluss- Strom bei Schutz durch Sicherungen ¹⁾	kA	100	100	100	100
Anschließbare Querschnitte (Kupfer)					
L1, L2, L3	mm ²	1 x 50 150	1 x 50 150	1 x 95 240	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120	2 x 95 120
N, PE, ISO-PE	mm ²	1 x 50 150	1 x 50 150	1 x 95 240	1 x 95 240
		2 x 50 120	2 x 50 120	2 x 95 120	2 x 95 120
Bolzenanschluss		M8	M10	M10	M10
Kabeleinführung					
stirnseitig		ja	ja	ja	ja
seitlich		ja	ja	ja	ja
Mehrleiterkabel					
Kabeltüllen		KT4	KT4	2 x KT4	2 x KT4
Kabeldurchmesser	mm	14 68	14 68	14 68	14 68
Einleiterkabel ²⁾					
AL-Platte, ungebohrt		10 x M50	10 x M50	10 x M50	10 x M50
Gewichte	kg	40	60	80	90

¹⁾ Sicherungen IEC 269-1-2, NF EN 60269-1, NFC 63211, NFC 63210, VDE 0636-1, DIN 43620

²⁾ Kabelverschraubungen mit Zugentlastung sind erforderlich (nicht im Lieferumfang enthalten)

5.6 Maßzeichnungen

Soweit nicht anders angegeben, sind alle Maße in mm.

5.6.1 Schienenkästen

Baugrößen Einfachsystem

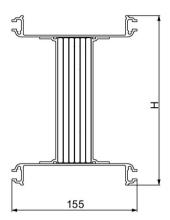


Bild 5-23 Baugrößen H x B Einfachsystem

Tabelle 5- 10 AL-System

Höhe H [mm]	System
111	LI-A.0800
132	LI-A.1000
146	LI-A.1250
182	LI-A.1600
230	LI-A.2000
297	LI-A.2500

Tabelle 5- 11 CU-System

Höhe H [mm]	System
111	LI-C.1000
117	LI-C.1250
146	LI-C.1600
174	LI-C.2000
213	LI-C.2500
280	LI-C.3200

Baugrößen Doppelsystem

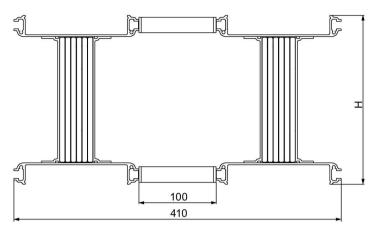


Bild 5-24 Baugrößen (H x B) Doppelsystem

Tabelle 5- 12 AL-System

Höhe H [mm]	System	
182	LI-A.3200	
230	LI-A.4000	
297	LI-A.5000	

Tabelle 5- 13 CU-System

Höhe H [mm]	System
174	LI-C.4000
213	LI-C.5000
280	LI-C.6300

Gerade Länge

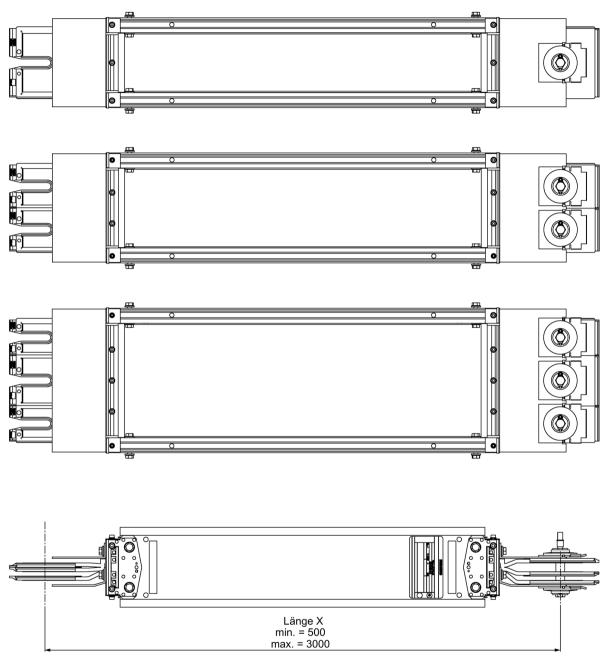
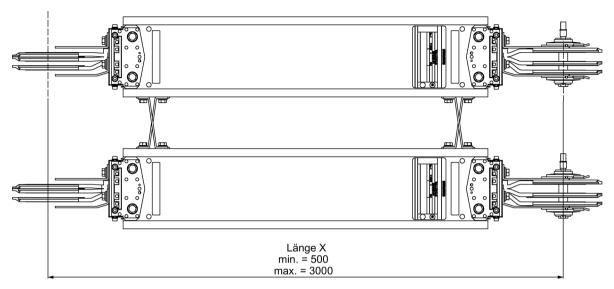


Bild 5-25 Gerade Länge

Doppelsystem



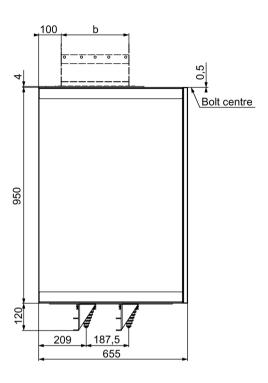


Bild 5-26 Doppelsystem

Kabeleinspeisung

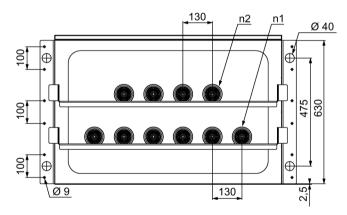


Bild 5-27 Kabeleinspeisung

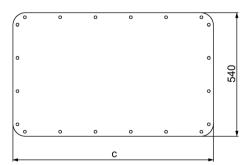
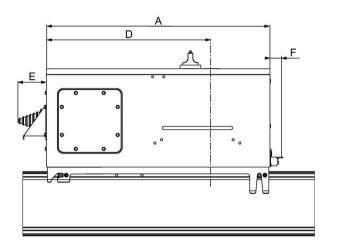



Bild 5-28 Einzelader-Kabeleinführungsplatte

Тур	Gehäu	Gehäuseabmessungen		Ka	beleinführ	ung	Kabelverbindungen		
	а	b	С	n1	n2	n3	Schraube	Max. Quer- schnitt	
LI-AM0800CFE	670	110,5	540	3	0	3	3 x M16	300 mm ²	
LI-AM1000CFE	670	131,8	540	3	1	4	4 x M16	300 mm ²	
LI-AM1250CFE	670	146,1	540	3	2	5	5 x M16	300 mm ²	
LI-AM1600CFE	670	181,8	540	3	3	6	6 x M16	300 mm ²	
LI-AM2000CFE	1000	229,8	880	6	2	8	8 x M16	300 mm ²	
LI-AM2500CFE	1000	296,5	880	6	4	10	10 x M16	300 mm ²	
LI-CM1000CFE	670	110,5	540	3	1	4	4 x M16	300 mm ²	
LI-CM1250CFE	670	117,2	540	3	2	5	5 x M16	300 mm ²	
LI-CM1600CFE	670	146,1	540	3	3	6	6 x M16	300 mm ²	
LI-CM2000CFE	1000	174	880	6	2	8	8 x M16	300 mm ²	
LI-CM2500CFE	1000	213	880	6	4	10	10 x M16	300 mm ²	
LI-CM3200CFE	1000	280	880	6	5	11	11 x M16	300 mm ²	

5.6.2 Abgangskästen

Abgangskästen bis 630 A

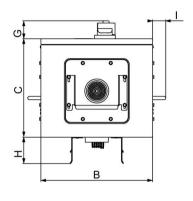
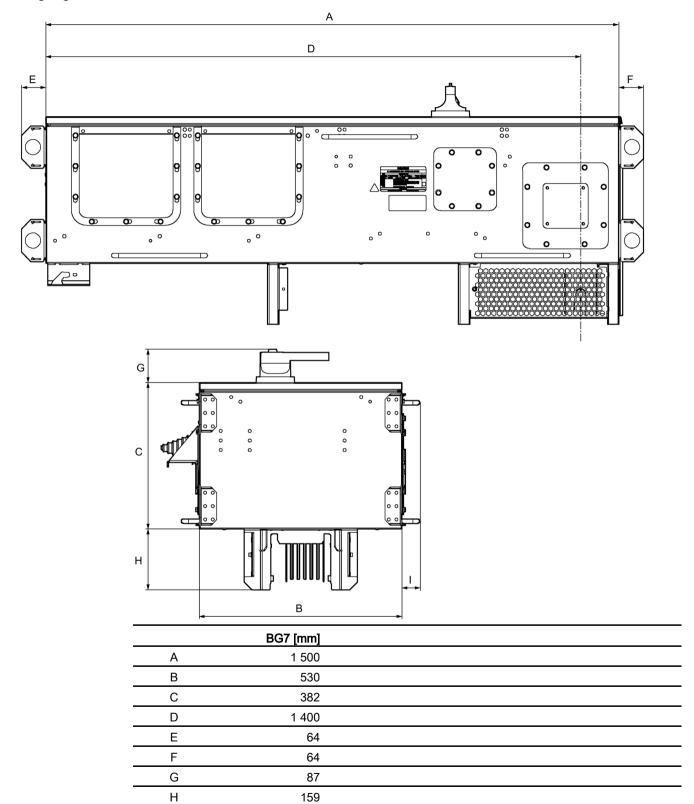
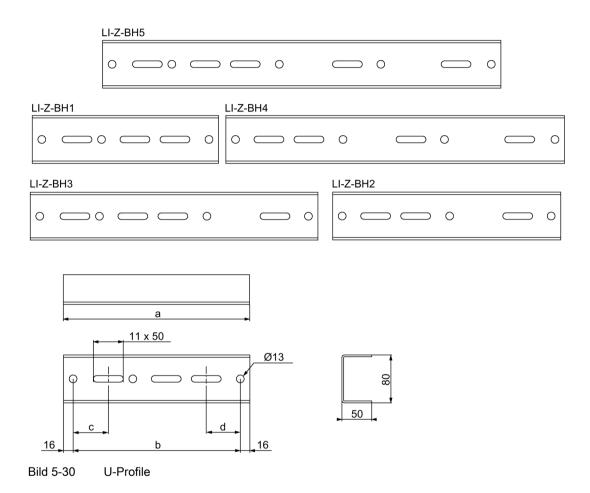



Bild 5-29 Abgangskästen bis 630 A

	BG1	BG2	BG3	BG4	BG5
Α	510 mm	600 mm	800 mm	860 mm	860 mm
В	250 mm	320 mm	400 mm	440 mm	530 mm
С	250 mm	280 mm	352 mm	352 mm	382 mm
D	345 mm	435 mm	635 mm	695 mm	695 mm
Е	85 mm	85 mm	85 mm	85 mm	85 mm
F	50 mm	50 mm	50 mm	50 mm	50 mm
G	57 mm	57 mm	57 mm	57 mm	57 mm
Н	95 mm	95 mm	95 mm	95 mm	95 mm
I	Keine Handgriffe	47 mm	47 mm	47 mm	47 mm

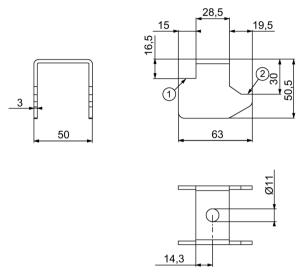
Abgangskästen bis 800 A, 1250 A



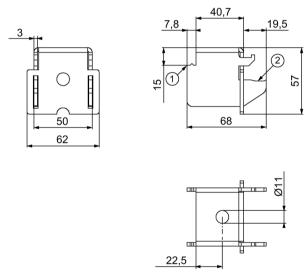
47

5.6.3 Zusatzausrüstung

5.6.3.1 Befestigung für horizontale Strangführung


U-Profile

Туре	a [mm]	b [mm]	c [mm]	d [mm]
LI-Z-BH1	312	280	59	57
LI-Z-BH2	382	350	56	56
LI-Z-BH3	482	450	59	56
LI-Z-BH4	567	535	56	59
LI-Z-BH5	667	635	59	59


Gerader Schienenkasten	Einbaulage flach	Einbaulage hochkant
LI-A.0800	LI-Z-BH1	LI-Z-BH1
LI-A.1000	LI-Z-BH1	LI-Z-BH1
LI-A.1250	LI-Z-BH1	LI-Z-BH1
LI-A.1600	LI-Z-BH2	LI-Z-BH1
LI-A.2000	LI-Z-BH2	LI-Z-BH1
LI-A.2500	LI-Z-BH3	LI-Z-BH1
LI-A.3200	LI-Z-BH2	LI-Z-BH4
LI-A.4000	LI-Z-BH2	LI-Z-BH4
LI-A.5000	LI-Z-BH3	LI-Z-BH4
LI-C.1000	LI-Z-BH1	LI-Z-BH1
LI-C.1250	LI-Z-BH1	LI-Z-BH1
LI-C.1600	LI-Z-BH1	LI-Z-BH1
LI-C.2000	LI-Z-BH2	LI-Z-BH1
LI-C.2500	LI-Z-BH2	LI-Z-BH1
LI-C.3200	LI-Z-BH3	LI-Z-BH1
LI-C.4000	LI-Z-BH2	LI-Z-BH4
LI-C.5000	LI-Z-BH2	LI-Z-BH4
LI-C.6300	LI-Z-BH3	LI-Z-BH4
LI-A.0800 LI-C.6300	LI-Z-BH5	LI-Z-BH5

Klemmbügel flexibel

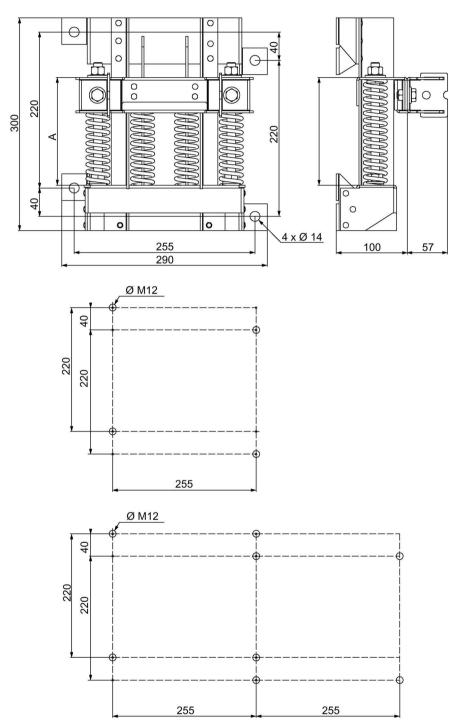
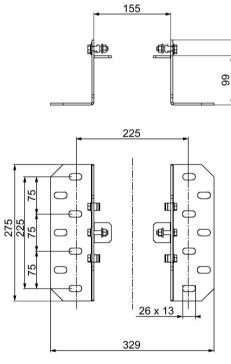
- ① Befestigungsbereich Einbaulage flach
- 2 Befestigungsbereich Einbaulage hochkant

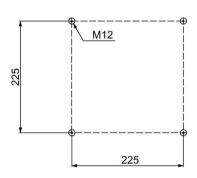
Bild 5-31 Klemmbügel flexibel LI-Z-BKK8

- ① Befestigungsbereich Einbaulage flach
- ② Befestigungsbereich Einbaulage hochkant

Bild 5-32 Klemmbügel fix LI-Z-BKFK2

5.6.3.2 Befestigungsbügel für vertikale Strangführung


Bild 5-33 Befestigungsbügel für vertikale Strangbügel

Artikelnummer	Тур	Farbe der Feder	Anzahl der Federn	Einstellmaß A der Federn [mm]
8PS7073-0AA00-0AA3	LI-Z-BV-01	Gelb	3	106
8PS7073-0AA00-0AA4	LI-Z-BV-02	Rot	3	101
8PS7073-0AA00-0AA1	LI-Z-BV-03	Rot	4	99
8PS7073-0AA00-0AA2	LI-Z-BV-04	Blau	4	108
8PS7073-0AA00-0AA5	LI-Z-BV-05	Grün	4	118
8PS7073-0AA00-0AA6	LI-Z-BV-06	Grau	4	127
8PS7073-0AA00-1AA0	LI-Z-BV-07	Dunkelgrau	4	137
8PS7073-0AA00-1AA1	LI-Z-BV-08	Dunkelgrau	4	134

LI-Z-BVFP-SB

LI-Z-BVFP-DB

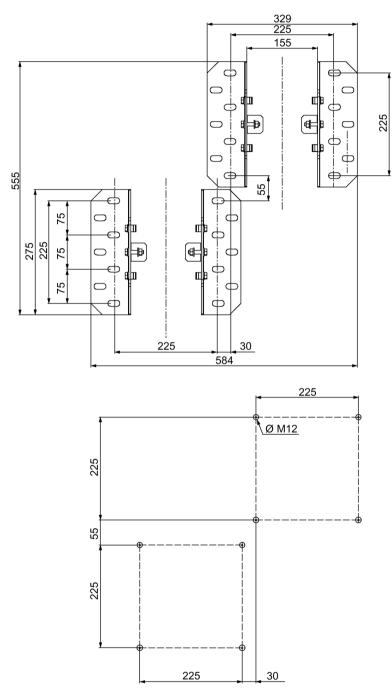


Bild 5-35 LI-Z-BVFP-DB

LI-Z-BVD-SB

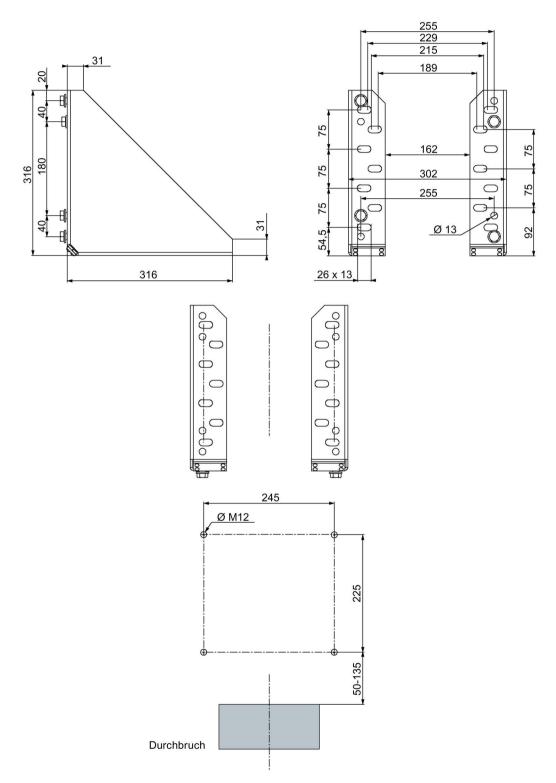


Bild 5-36 LI-Z-BVD-SB mit Bohrplan

LI-Z-BVD-DB

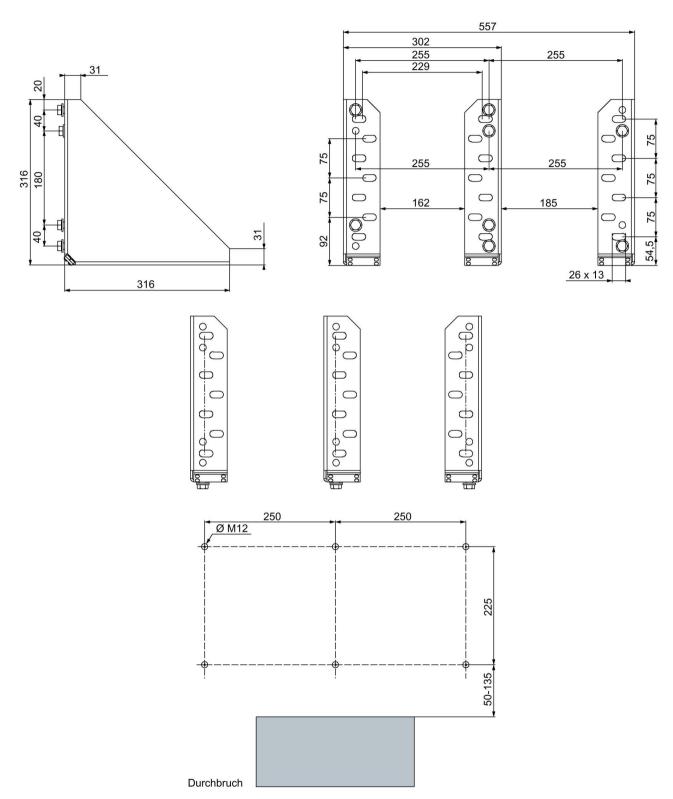
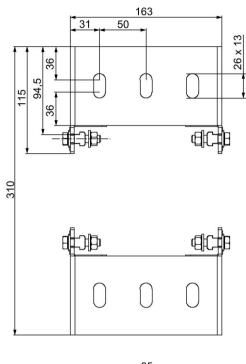
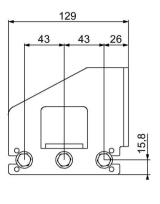
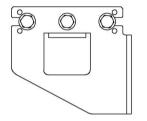





Bild 5-37 LI-Z-BVD-DB

LI-Z-BVF-SB, LI-Z-BVF-DB

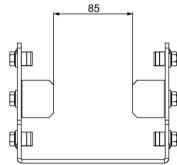


Bild 5-38 LI-Z-BVF-SB, LI-Z-BVF-DB

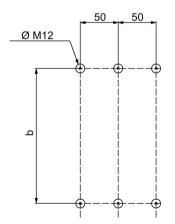


Bild 5-39 LI-Z-BVF-SB Bohrplan

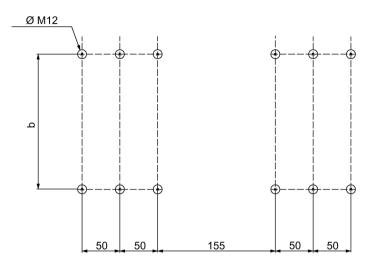
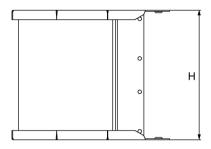



Bild 5-40 LI-Z-BVF-DB Bohrplan

System	b [mm]
LIA.0800L	198
LIA.1000L	219
LIA.1250L	234
LIA.1600L	269
LIA.2000L	317
LIA.2500L	384
LIA.3200L	269
LIA.4000L	317
LIA.5000L	384
LIC.1000L	198
LIC.1250L	205
LIC.1600L	234
LIC.2000L	262
LIC.2500L	300
LIC.3200L	368
LIC.4000L	262
LIC.5000L	300
LIC.6300L	368

Endkappe

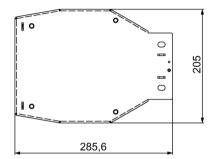
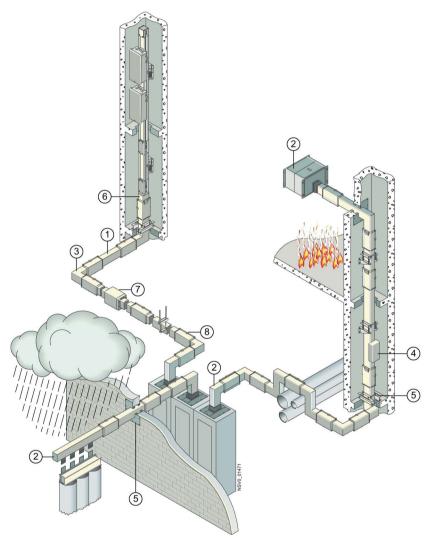



Bild 5-41 Endkappe

Тур	H [mm]
LI-A.08, LI-C.10	114,5
LI-C.12	121,2
LI-A.10	135,8
LI-A.12, LI-C.16	150,1
LI.C.20, LI-C.40	178,0
LI-A.16, LI-A.32	185,8
LI-C.25, LI-C.50	217,0
LI-A.20, LI-A.40	233,8
LI-C.32, LI-C.63	284,0
LI-A.25, LI-A.50	300,5

Planen mit LR

6.1 Systembeschreibung

- ① Gerade Schienenkästen
- ② Einspeisekästen
- 3 Richtungsänderungen
- 4 Abzweigkästen
- S Zubehör
- 6 Adapter auf das System LI
- 7 Dehnungsausgleich
- 8 Vergossenes Verbindungselement

Bild 6-1 Aufbau System LR

6.2 Systemkomponenten

Dank seines Gehäuses aus Epoxid-Gießharz mit hoher Schutzart IP68 und hoher Kurzschlussfestigkeit sorgt das System LR selbst unter widrigsten Umgebungsbedingungen für zuverlässigen Energietransport. Umweltbedingte Faktoren wie Luftfeuchtigkeit, korrosive oder salzhaltige Atmosphären können ihm nichts anhaben.

Das kompakte System kann in Anwendungen von 400 A bis 6300 A je nach Bedarf flach, hochkant, vertikal oder horizontal verlegt werden. Durch Winkelstücke, Verbinder und T-Stücke zur Richtungsänderung lässt es sich optimal und mit geringstem Platzbedarf an die baulichen Gegebenheiten anpassen. Das System LR eignet sich auch bestens für den Einsatz im Freien.

6.2 Systemkomponenten

6.2.1 Vorbemerkung für Leistungsverzeichnisse

Grundbeschreibung Schienenverteiler 400 A bis 6300 A

Schienenverteiler sind als bauartgeprüfte Niederspannungs-Schaltgeräte-Kombination in anschlussfertiger Ausführung zu liefern und zu montieren.

Nachfolgende Beschreibungen sind Kalkulations- und Vertragsbestandteile. Sie sind bei den Beschreibungen der Einzelanlagen und der Betriebsmittel zu berücksichtigen, auch wenn sie nicht mehr im Detail erwähnt werden.

Der Schienenverteiler muss für den Energietransport, z. B. zwischen Transformator und Niederspannungshauptverteilung, für die Energieverteilung als flächendeckende Versorgung und sowohl für horizontale als auch für vertikale Installation geeignet sein.

Der Schienenverteiler muss aus listenmäßigen Systembausteinen bestehen, z. B. aus:

- Geraden Schienenkästen
- Einspeisekästen für Transformator-, Verteiler- und Kabeleinspeisungen
- Richtungsänderungen mit Winkel, versetztem Winkel, Knie, versetztem Knie, Z-Kästen und T-Kästen
- Verbindungselementen
- Zubehör

Der Schienenverteiler muss aus standardisierten und werksmäßig gefertigten Systembausteinen bestehen. Flexible Richtungsänderungen und Richtungsänderungen als Kabelverbindungen werden nicht zugelassen. Dehnungsausgleichskästen und Festpunkte sind nach Bedarf zu projektieren.

Die Schienenverteiler mit Abzweigstellen sind nach Bedarf mit Standardelementen zu bestücken. Lage und Anzahl der Abgangsstellen müssen projektierbar sein. Die fest installierbaren Abzweigkästen sind nur spannungsfrei montier- und demontierbar.

Bei Bedarf muss es möglich sein, den Schienenverteiler mit einer asbestfreien Brandschottung zur Wand oder Deckendurchführung auszurüsten, die der geforderten Feuerwiderstandsklasse S60, S90 oder S120 entspricht.

Die Umhüllung besteht aus Epoxidharz und ist korrosionsfrei. Der Querschnitt der Schienenkästen darf die in den technischen Daten angegebenen Abmessungen nicht überschreiten.

Die Verbindung der einzelnen Systembausteine hat durch Anziehen eines dem heutigen Stand der Technik entsprechenden Bolzenklemmblock zu erfolgen.

Die Verbindung ist nach Montage des Bolzenklemmblocks mit Gießharz zu vergießen und zu verschließen.

Die Stromschienen müssen aus Aluminium mit Kupferbeschichtung oder Kupfer bestehen. Die äußeren Abmessungen der Umhüllung / Gehäuse dürfen die in den technischen Daten angegebenen Werte nicht überschreiten.

Die Brandlast darf den in den technischen Daten angegebenen Wert nicht überschreiten.

Konformität und Prüfungsnachweise

Der Hersteller des Schienensystems hat ein zertifiziertes Qualitätsmanagementsystem nach EN ISO 9001 zu unterhalten und nachzuweisen.

Die nachstehenden Qualifikationen für das gesamte System sind durch Zertifikate oder Konformitätserklärungen nachzuweisen:

- Bauartprüfung gemäß IEC / EN 61439-1 und -6
- Klimafestigkeit nach IEC 60068-2-78 (konstant) und IEC 60068-2-30 (zyklisch)
- Brandschutz nach DIN 4102--9

Spezielle, zusätzliche Eigenschaften (z. B. Funktionserhalt) der Systemkomponenten sind gesichert nachzuweisen.

Technische Daten Schienenverteiler

		LR	
Umgebungstemperatur min. / max. / 24-l	h-Mittel	–5 / +40 / 35 °C	
Schutzart		IP68	
Drehmoment für Klemmblock		LR.01 LR03: 40 Nm ¹⁾	
		LR.04 LR29: 84 Nm ¹⁾	
Werkstoff Schienenkästen		Epoxidharz	
Farbe Schienenkästen		Ähnlich RAL 7030 (steingrau)	
Bemessungsisolationsspannung	AC	1000 V	
Bemessungsbetriebsspannung	AC	1000 V	
Bemessungsfrequenz		50 60 Hz	
Bemessungsstrom		2)	
Bemessungskurzzeitstromfestigkeit			
Außenleiter /cw (1 s)		2)	
Neutralleiter Icw (1 s)		2)	
5. Leiter <i>l</i> _{cw} (1 s)		2)	
Bemessungsstoßstromfestigkeit /pk		2)	
Leitermaterial		AL / CU ¹⁾	
Anzahl der Schienen		2)	
Leiterquerschnitt			
L1, L2, L3		2)	
N		2)	
PE		2)	
Brandlasten			
Schienenkasten		2)	
Max. Befestigungsabstände			
horizontal hochkant		2)	
horizontal flach		2)	
vertikal		2)	
Gehäuseabmessungen		2)	

¹⁾ Nicht Zutreffendes bitte streichen.

Die Werte zu den gewählten Systemen finden Sie in dem Kapitel "Technische Daten (Seite 252)"

²⁾ Daten der gewählten Systeme eintragen.

6.2.2 Typenschlüssel

Die Komponenten des Systems LR werden mittels eines Typenschlüssels bestimmt. In Abhängigkeit des Bemessungsstroms, des Leitermaterials und der Netzform oder Leiterkonfiguration wird der Typ beschrieben und ausgewählt.

Der folgende Typenschlüssel ermöglicht eine genaue Definition des Bestelltyps.

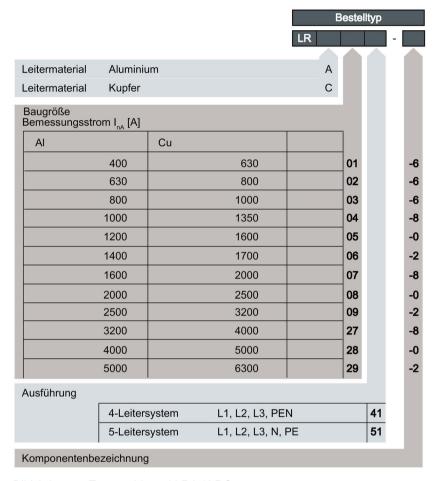


Bild 6-2 Typenschlüssel LRA / LRC

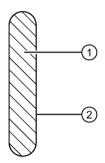
Auswahlbeispiel:

In einem Projekt wird ein Bemessungsstrom von 2500 A ermittelt. Vorgeschrieben ist ein 5-poliges System.

Daraus ergibt sich der Typ LRC0851-0.

6.2.3 Baugrößen und Aufbau des Systems

Baugrößen


Die Baugrößen sind abhängig von der Bemessungsstromstärke. Insgesamt gibt es neun Baugrößen. Sechs Baugrößen sind als Einfachsystem ausgeführt und drei Baugrößen als Doppelsystem.

Einfachsysteme bestehen aus einem Gehäuse mit je 4 bis 5 Schienen aus Aluminium bei dem System LRA und aus Kupfer bei dem System LRC. Die Doppelsysteme führen in zwei Gehäusen je 8 bis 10 Schienen.

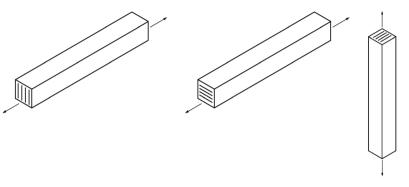
Die exakte Anzahl der Schienen richtet sich nach der geforderten Leiterkonfiguration.

Aufbau der Stromschienen

Die Stromschienen des Systems LRA sind oberflächenbehandelt (verkupfert), die Stromschienen des Systems LRC nicht.

- Aluminiumschiene
- ② Kupferbeschichtung

Bild 6-3 Stromschienensystem LRA



① Kupferschiene

Bild 6-4 Stromschienensystem LRC

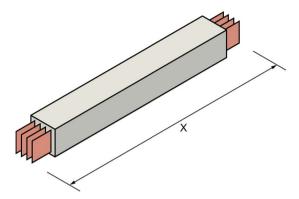
Einbaulagen und Bemessungsstrom

Durch die vergossene Bauweise ist die Strombelastbarkeit des Schienensystems LR von der Einbaulage unabhängig. Somit besteht eine hohe Flexibilität in der Strangführung. Eine Stromreduzierung ist für die Schienenlagen hochkant und flach bei horizontaler Strangführung sowie bei Steigeleitungen (vertikale Strangführung) nicht notwendig.

Strangverlauf horizontal, Schienenlage hochkant

Strangverlauf horizontal, Schienenlage flach

Strangverlauf vertikal


6.2.4 Leiterkonfiguration und Baugrößen

Abhängig von der Netzform, der Größe des N- und PE-Querschnitts ist das Schienensystem LRA / LRC in zwei verschiedenen Leiterkonfigurationen erhältlich.

/ _A [A]		4-Leitersystem				5-Leitersystem			
LRA	LRC		System	Α	В		System	Α	В
400	630		LR.0141	90	90	\^\^\	LR.0151	90	90
630	800		LR.0241			//->	LR.0251		
800	1000		LR.0341			_ + 1	LR.0351		
1000	1350	_ в	LR.0441	100	110	_ в	LR.0451	120	110
1200	1600	_ +	LR.0541		130	_ ; ;;;;;	LR.0551		130
1400	1700	A	LR.0641		150		LR.0651		150
1600	2000		LR.0741		190		LR.0751		190
2000	2500		LR.0841		230		LR.0851		230
2500	3200	_	LR.0941		270		LR.0951		270
3200	4000		LR.2741	100	380		LR.2751	120	380
4000	5000		LR.2841		460	_ // {	LR.2851		460
5000	6300	B A	LR.2941		540	B A	LR.2951		540

6.2.5 Gerade Schienenkästen

Gerade Schienenkästen für horizontale und vertikale Installation ohne Abzweigstellen und Verbindungselement

Projektierbare Längen X von 0,30 m bis 3,00 m im Raster von 0,01 m Gerade Schienenkästen für Abzweigkästen auf Anfrage

Gerade Schienenkästen für Adaption auf Systeme LI in Indoorbereich

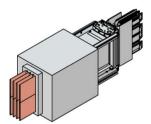


Bild 6-5 LR-LI Adapterelement (x = 0.8 m oder 0.95 m)

Gerade Schienenkästen für Adaption auf Systeme LD in Indoorbereich

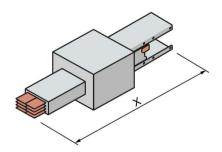
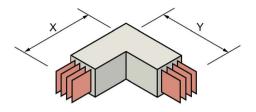
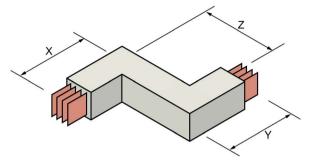
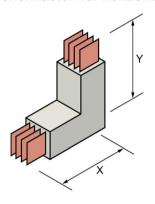
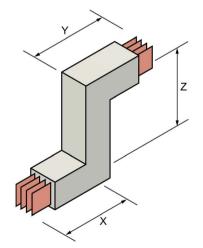




Bild 6-6 Adapterelement (X = 1,0 m)

6.2.6 Richtungsänderungen

Gewinkelte Schienenkästen für horizontale Installation

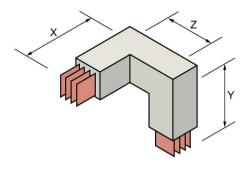


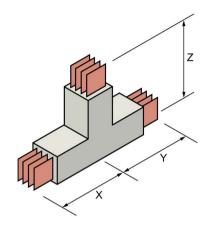

Winkel LR....-E(-1,0 / -1,5)

Z-Kasten LR....-ZE

Länge	System	Тур
X = 0,30 1,20 m Y = 0,30 1,20 m	LR.01 LR.29	LRE(-1,0 / -1,5)
X/Y = 0,35 m Z = 0,01 0,70 m	LR.01 LR.29	Z-Kasten LRZE

Gewinkelte Schienenkästen für horizontale und vertikale Installation




Knie LR....-K(-1,0 / -1,5)

Z-Kasten LR....-ZK

Länge	System	Тур
X/Y = 0,35 1,15 m	LR.01 LR.09	_ LRK(-1,0 / -1,5)
X/Y = 0,50 1,00 m	LR.27 LR.29	
X/Y = 0,35 m Z = 0,01 0,70 m	LR.01 LR.09	LRZK
X/Y = 0,50 m Z = 0,01 1,00 m	LR.27 LR.29	_

6.2 Systemkomponenten

Knie versetzt LR....-XL

T-Kasten LR....-TV(-2,0)

Länge	System	Тур
X/Y = 0,35 m Z = 0,09 0,70 m	LR.01 LR.09	LRXL
X/Y = 0,50 m Z = 0,25 1,00 m	LR.27 LR.29	
X/Y = 0,35 0,75 m Z = 0,35 0,50 m	LR.01 LR.09	LRTV(-2,0)
X/Y = 0,50 0,75 m Z = 0,50 m	LR.27 LR.29	_

6.2.7 Verteileranbindung für Siemens-Energieverteiler

Für das System LR kann mit einem LI-Anschluss-Stück über ein LR-Adapterelement eine bauartgeprüfte Anbindung an Siemens-Energieverteiler sichergestellt werden.

6.2.8 Anschluss-Stück für Fremdverteiler

Wenn Sie das Stromschienensystem an einen Verteiler anbinden wollen, der nicht von Siemens hergestellt wird, besteht die Möglichkeit, diese Verbindung mit einem Fremdverteiler-Anschluss-Stück LR....-T. auszuführen. Das Anschluss-Stück wird in den Verteiler eingebaut und stellt die Schnittstelle zur Verkupferung der Verteilung dar.

Ausführungen

Das Leitermaterial der Fremdverteiler-Anschluss-Stücke besteht aus Aluminium oder Kupfer. Die Bemessungsströme bis max. 6300 A entsprechenden Angaben im Kapitel "Technische Daten (Seite 252)". Die erforderlichen Anschlussquerschnitte für die Verkupferung sind ebenfalls im Kapitel "Technische Daten (Seite 252)" zu finden.

Einbau des Anschluss-Stücks

Die Verkupferung des Anschluss-Stücks im Verteiler muss vom Verteilerhersteller oder nach seinen Angaben ausgeführt werden. Der Verteilerhersteller muss sicherstellen, dass die notwendige Kurzschlussfestigkeit erreicht wird und die zulässige Grenztemperatur des Fremdverteiler-Anschluss-Stücks nicht überschritten wird.

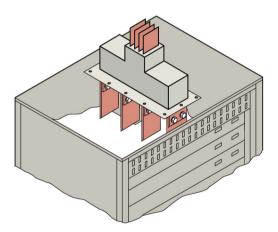
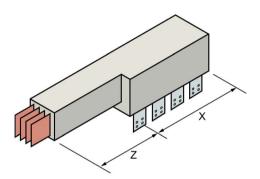


Bild 6-7 Fremdverteiler-Anschluss-Stück

Die Abmessungen entsprechen dem Anschluss-Stück für Kabeleinspeisungen.

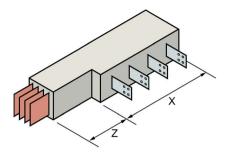
6.2.9 Anschluss-Stück für Transformatoren und Verteiler


Bei Betrachtung der verschiedenen Bemessungsströme sowie der unterschiedlichen Reihenfolgen und Abständen der Phasen verfügen Transformatoren über eine hohe Typenvielfalt.

Diese Typenvielfalt erfordert eine hohe Flexibilität beim Transformatoranschluss von Schienensystemen.

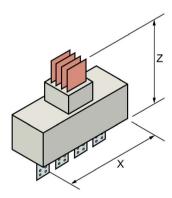
Das universelle Anschluss-Stück kann auch zur Anbindung von Verteilern eingesetzt werden.

Für Schienenverteiler LR bis 6300 A stehen Transformatoranschluss-Stücke mit seitlichem Schienenanschluss (LR....-TC, -TD oder -TE) sowie mit obigem Schienenanschluss (LR....-TJ, -TG, -TM, -TK oder -TX) zur Verfügung.


Schienenanschluss seitlich und Kundenanschluss unten

LR....-TE(-F)

Länge	System	
$X \le 0.70 \text{ m}$ $Z = 0.30 \dots 0.50 \text{ m}$	LR.01 LR.09	
X ≤ 1,00 m Z = 0,30 0,50 m	LR.27 LR.29	


Schienenanschluss seitlich und Kundenanschluss seitlich

LR....-TC(-F)

Länge	System
X ≤ 0,40 0,70 m (4L), 0,50 0,70 m (5L) Z = 0,30 0,50 m	LR.01 LR.29

Schienenanschluss oben und Kundenanschluss unten

LR....-TX(-F)

Länge	System
X ≤ 0,70 m Z = 0,50 m	LR.01 LR.09
X ≤ 1,00 m Z = 0,70 m	LR.27 LR.29

Die Phasenabstände sind wählbar bis 750 mm.

Mindestphasenabstand: Fahnenbreite + 25 mm

Die Reihenfolge der Anschlussfahnen von den Leitern L1, L2, L3, N (PEN) und PE ist frei wählbar.

6.2.10 Kabeleinspeisung

Wenn eine Einspeisung des Schienensystems über Kabel erforderlich ist, verwenden Sie die Kabeleinspeisung LR....-KE.

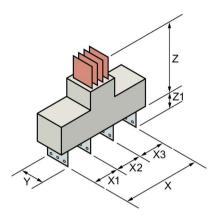


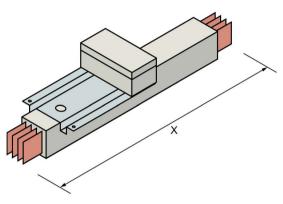
Bild 6-8 Kabeleinspeisung

Ausführung	Größe
4-Leiter	X = 0.40 m
	Z = 0.30 m
	$Z_1 = 0.06 \text{ m}$
5-Leiter	X = 0,50 m
	Z = 0.30 m
	$Z_1 = 0.06 \text{ m}$

Anschlussfahnen

Abstand	Breite	Тур
$X_1 = X_2 = X_3 = 0,10 \text{ m}$	Y = 0,06 m	LR.01 LR.03
	Y = 0,09 m	LR.04
	Y = 0,11 m	LR.05
	Y = 0,12 m	LR.06
	Y = 0,16 m	LR.07
	Y = 0,19 m	LR.08
	Y = 0,21 m	LR.09 LR.29

Sie können Einleiter- oder Mehrleiterkabel anschließen. Dabei können Sie Querschnitte bis 300 mm² (Bolzenanschluss) direkt an die Anschluss-Schienen der Kabeleinspeisung anschließen.


Die Kabelanschlüsse werden nach dem Anschluss der Kabel an den Fahnen vor Ort vergossen. Dazu wird eine Verguss-Schale und Vergussmasse mitgeliefert.

6.2.11 Abzweige für Energieverteilung

Grundsätzlich dient das System LR dem reinen Energietransport. Trotzdem besteht die Möglichkeit, durch den Einsatz von geraden Schienenkästen mit Abzweigstellen und entsprechenden Abzweigkästen auf dem LR-Strang Energieabgriffe für Verbraucher zu schaffen.

Hinweis

Abzweigkästen erhalten Sie auf Anfrage.

 $x = X = 0,50 \dots 3,00 \text{ m}$

Bild 6-9 Gerader Schienenkasten mit Abzweigkasten

Der Abzweigkasten ermöglicht eine Stromentnahme bis 630 A. An dem Abzweigkasten erfolgt der Anbau eines Geräteraums. In den Geräteraum werden projektspezifische Schaltgeräte, z. B. Leistungsschalter, eingebaut und elektrisch sowie mechanisch an den Abzweigkasten angeschlossen.

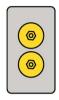
Abzweigkästen sind grundsätzlich nicht unter Spannung steckbar.

Sämtliche weitere Eigenschaften und technische Daten müssen Sie projektspezifisch anfragen.

6.2.12 Zusatzausrüstung

Klemmblock

Der Klemmblock dient der elektrischen und mechanischen Verbindung der Schienenkästen. Die Schienenkästen LR werden generell ohne Verbindungselemente (Klemmblöcke oder auch Monoblöcke genannt) ausgeliefert. Somit müssen die Klemmblöcke stets gemäß der Anzahl von Schienenkastenverbindungen berücksichtigt, geplant und separat bestellt werden.



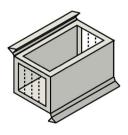


Bild 6-10

Verbindungselement

Zubehör für die Schienenkastenverbindung

Nachdem die elektrische Verbindung mit dem Klemmblock erstellt wurde, muss die Verbindungsstelle mit Epoxidharz vergossen werden. Dazu gibt es im Zubehör Verguss-Schalen, Vergussmasse, Trennmittel und verschiedene Werkzeuge.

Verguss-Schale

Vergussmasse

Werkzeugset

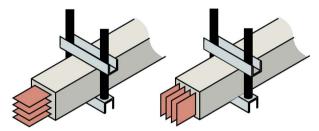
Befestigungsbügel für horizontale Installation

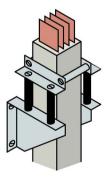
Es stehen verschiedene Arten von Befestigungsbügeln zur Verfügung:

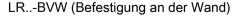
- Einbaulage: hochkant oder flach
- Befestigungseigenschaft: Stützen oder Fixieren des Strangs.

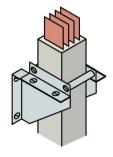
Die üblichen Stützbügel sind:

- Typ LR..-BHF für die Einbaulage hochkant
- Typ LR..-BHH für die Einbaulage flach




Bild 6-11 Einbaulage flach (links) und hochkant (rechts)


Die so genannten Fixpunkte erfolgen nur bei Einsatz großer Stranglängen in Verbindung mit Dehnungsausgleichkästen.


Befestigungsbügel für vertikale Installation

Für die Installation vertikaler Strangverläufe ist die Verwendung verschiedener Bügelarten notwendig:

- Federbügel zum Tragen des Stranggewichts, Typ LR..-BV.
- Gleitbügel zum Führen des Strangs in vorgeschriebener Position, Typ LR..-BG
- Fixpunkte zur Fixierung des Strangs an den Baukörper, Typ LR..-BF.

LR..-BF

6.3 Technische Daten

6.3.1 LR allgemein

			LR
Normen und Bestimmungen			IEC / EN 61439-1 und -6
Bemessungsisolationsspannung $^{1)}$ U_{i}	AC	V	1000
Überspannungskategorie / Verschmutzungsgrad			III/3
Bemessungsbetriebsspannung ¹⁾ U _e	AC	V	1000
Frequenz		Hz	50 60
Bemessungsstrom InA		Α	400 5000 (LRA)
			630 6300 (LRC)
Klimafestigkeit			Feuchte Wärme (konstant), nach IEC 60068-2-78
			Feuchte Wärme (zyklisch), nach IEC 60068-2-30
Umgebungstemperatur*		°C	-5 + 40
Schutzart nach IEC / EN 60529 (Bauart 2)			
Schienenelemente			IP68
Anschlusselemente / Abzweigkästen			IP68
Werkstoff			
Umhüllung Schienenelemente, Anschlusselement	te		Epoxidharz
Stromschienen		Aluminium mit Kupferbeschichtung (LRA)	
			Kupfer (LRC)
Einbaulagen			Horizontal hochkant, horizontal flach, vertikal
Farbe			Steingrau, ähnlich RAL 7030

^{*} Beachten Sie den Derating Faktor für Bemessungsstrom bei hohen Umgebungstemperaturen.

Temperaturverhalten

Parameter Werte									
Umgebungstemperatur [°C]	20	25	30	35	40	45	50	55	60
Umrechnungsfaktor	1,15	1,10	1,05	1,00	0,96	0,89	0,84	0,78	0,72

¹⁾ Für Energieverteilung bei Einsatz von Abzweigkästen auf Anfrage

6.3.2 Schienenkästen LRA..41 (4-polig, Aluminium)

LRA0141 bis LRA0341

	LRA			0141	0241	0341
Bemessungsstrom		/ nA	Α	400	630	800
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentempera-	Wirkwiderstand	R ₂₀	mΩ/m	0,161	0,121	0,081
tur	Blindwiderstand	X ₂₀	mΩ/m	0,050	0,042	0,026
	Impedanzbelag	Z_{20}	mΩ/m	0,169	0,128	0,085
Bei 50 Hz und Enderwärmung der Schie-	Wirkwiderstand	R _{warm}	mΩ/m	0,176	0,142	0,096
nen	Blindwiderstand	X_{warm}	mΩ/m	0,050	0,042	0,026
	Impedanzbelag	Z_{warm}	mΩ/m	0,178	0,151	0,102
Für 4-polige Systeme im Fehlerfall nach	Wirkwiderstandsbelag	R_F	mΩ/m	0,353	0,284	0,193
EN 61439-6 Anhang N	Blindwiderstandsbelag	X_{F}	mΩ/m	0,175	0,100	0,155
	Impedanzbelag	Z _F	mΩ/m	0,394	0,121 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0,045 0,051 0,301 0,379 0,509 0,634 24 12 ium 236 236	0,247
Nullimpedanz für 4-polige Systeme nach	Wirkwiderstand PEN	R ₀	mΩ/m	0,470	0,379	0,257
DIN VDE 0102, IEC 909	Blindwiderstand PEN	X ₀	mΩ/m	0,609	0,509	0,529
	Impedanzbelag PEN	Z ₀	mΩ/m	0,769	0,634	0,588
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	24	24	55,7
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw	kA	12	12	26,5
Leitermaterial				Aluminiur	n	
Leiterquerschnitt	PEN		mm²	176	236	354
Leiterquerschnitt aktive Leiter			mm²	176	236	354
Brandlast			kWh/m	13,01	12,59	11,76
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (bei 2 m Länge mit Klemmverbind	lung)		kg/m	21,89	22,08	22,46

6.3 Technische Daten

LRA0441 bis LRA0941

	LRA			0441	0541	0641	0741	0841	0941
Bemessungsstrom		/ nA	Α	1000	1200	1400	1600	2000	2500
Schutzart					II	P68			
Bei 50 Hz und +20 °C	Wirkwiderstand	R ₂₀	mΩ/m	0,060	0,048	0,040	0,030	0,024	0,020
Schienentemperatur	Blindwider- stand	X ₂₀	mΩ/m	0,055	0,050	0,042	0,046	0,031	0,029
	Impedanzbelag	Z ₂₀	mΩ/m	0,081	0,070	0,058	0,055	0,040	0,035
Bei 50 Hz und Ender-	Wirkwiderstand	R _{warm}	mΩ/m	0,074	0,059	0,050	0,036	0,029	0,026
wärmung der Schie- nen	Blindwider- stand	X_{warm}	mΩ/m	0,055	0,050	0,042	0,046	0,031	0,029
	Impedanzbelag	Z_{warm}	mΩ/m	0,094	0,079	0,066	0,059	0,043	0,038
Für 4-polige Systeme im Fehlerfall nach	Wirkwider- standsbelag	R _F	mΩ/m	0,149	0,119	0,099	0,073	0,060	0,051
EN 61439-6 Anhang N	Blindwider- standsbelag	XF	mΩ/m	0,147	0,118	0,098	0,091	0,116	0,118
	Impedanzbelag	Z_{F}	mΩ/m	0,209	0,167	0,139	0,117	0,131	0,129
Nullimpedanz für 4- polige Systeme nach	Wirkwiderstand PEN	R ₀	mΩ/m	0,198	0,159	0,132	0,097	0,080	0,068
DIN VDE 0102, IEC 909	Blindwider- stand PEN	X ₀	mΩ/m	0,355	0,284	0,237	0,220	0,212	0,204
	Impedanzbelag PEN	Z ₀	mΩ/m	0,407	0,325	0,271	0,240	0,227	0,215
Kurzschlussfestigkeit									
Bemessungsstoßstromf	estigkeit	/ pk	kA	55,7	117	117	143	143	143
Bemessungskurzzeit- stromfestigkeit	t = 1 s	/ cw	kA	26,5	53	53	65	65	65
Leitermaterial					Alur	minium			
Leiterquerschnitt	PEN		mm²	472	592	712	944	1184	1424
Leiterquerschnitt aktive	Leiter		mm²	472	592	712	944	1184	1424
Brandlast			kWh/m	15,72	19,19	21,32	27,51	32,05	36,68
Befestigungsabstände			m	1,5	1,5	1,5	1,5	1,5	1,5
Gewicht (Bei 2 m Länge	e mit Klemmverbir	ndung)	kg/m	29,74	34,66	38,81	48,87	58,17	67,97

LRA2741 bis LRA2941

	LRA			2741	2841	2941
Bemessungsstrom		<i>I</i> _{nA}	Α	3200	4000	5000
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentem-	Wirkwiderstand	R ₂₀	mΩ/m	0,015	0,012	0,010
peratur	Blindwiderstand	X ₂₀	mΩ/m	0,024	0,026	0,023
	Impedanzbelag	Z ₂₀	mΩ/m	0,028	0,029	0,025
Bei 50 Hz und Enderwärmung der	Wirkwiderstand	Rwarm	mΩ/m	0,019	0,015	0,013
Schienen	Blindwiderstand	X_{warm}	mΩ/m	0,024	0,026	0,023
	Impedanzbelag	Z_{warm}	mΩ/m	0,031	0,030	0,026
Für 4-polige Systeme im Fehlerfall	Wirkwiderstandsbelag	RF	mΩ/m	0,038	0,030	0,025
nach EN 61439-6 Anhang N	Blindwiderstandsbelag	X_{F}	mΩ/m	0,093	0,084	0,068
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,089	0,073			
Nullimpedanz für 4-polige Systeme	Wirkwiderstand PEN	R ₀	mΩ/m	0,051	0,041	0,034
nach DIN VDE 0102, IEC 909	Blindwiderstand PEN	X ₀	mΩ/m	0,197	0,192	0,167
	Impedanzbelag PEN	Z ₀	mΩ/m	0,204	0,196	0,170
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	220	220	220
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw	kA	100	100	100
Leitermaterial				Aluminium	1	
Leiterquerschnitt	PEN		mm ²	1889	2368	2849
Leiterquerschnitt aktive Leiter			mm ²	1889	2368	2849
Brandlast			kWh/m	55,01	64,11	73,36
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (Bei 2 m Länge mit Klemmve	rbindung)		kg/m	97,74	116,34	135,95

Widerstandbeläge aus Messungen / Ableitungen

6.3.3 Schienenkästen LRA..51 (5-polig, Aluminium)

LRA0151 bis LRA0351

	LRA			0151	0251	0351
Bemessungsstrom		I nA	Α	400	630	800
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentem-	Wirkwiderstand	R ₂₀	mΩ/m	0,161	0,121	0,081
peratur	Blindwiderstand	X ₂₀	mΩ/m	0,050	0,042	0,026
	Impedanzbelag	Z ₂₀	mΩ/m	0,169	0,128	0,085
Bei 50 Hz und Enderwärmung der	Wirkwiderstand	Rwarm	mΩ/m	0,176	0,142	0,096
Schienen	Blindwiderstand	X_{warm}	mΩ/m	0,050	0,042	0,026
	Impedanzbelag	Z_{warm}	mΩ/m	0,178	0,151	0,102
Für 5-polige Systeme (PE) im Fehler- fall nach EN 61439-6 Anhang N	Wechselstromwiderstands- belag PE	R _F	mΩ/m	0,353	0,284	0,193
	Blindwiderstandsbelag PE	XF	mΩ/m	0,157	0,090	0,140
	Impedanzbelag PE	Z_{F}	mΩ/m	0,386	0,298	0,238
Für 5-polige Systeme (N) im Fehlerfall	Wirkwiderstandsbelag N	R _F	mΩ/m	0,353	0,284	0,193
nach EN 61439-6 Anhang N	Blindwiderstandsbelag N	XF	mΩ/m	0,175	0,100	0,155
	Impedanzbelag N	Z_{F}	mΩ/m	0,394	0,301	0,209
Nullimpedanz für 5-polige Systeme	Wirkwiderstand 1 N	R ₀	mΩ/m	0,447	0,360	0,244
(PE) nach DIN VDE 0102, IEC 909	Blindwiderstand 1 N	X ₀	mΩ/m	0,974	0,814	0,846
	Impedanzbelag 1 N	Z ₀	mΩ/m	1,071	0,890	0,880
Nullimpedanz für 5-polige Systeme	Wirkwiderstand 2 PE	R ₀	mΩ/m	0,470	0,379	0,257
(PE) nach DIN VDE 0102, IEC 909	Blindwiderstand 2 PE	X_0	mΩ/m	0,609	0,509	0,529
	Impedanzbelag 2 PE	Z_0	mΩ/m	0,769	0,634	0,588
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	24	24	55,7
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ _{cw}	kA	12	12	26,5
Leitermaterial				Aluminium		
Leiterquerschnitt	N		mm²	176	236	354
Leiterquerschnitt aktive Leiter			mm²	176	236	354
Leiterquerschnitt	PE		mm²	176	236	354
Brandlast			kWh/m	12,70	12,17	11,13
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (Bei 2 m Länge mit Klemmverb	oindung)		kg/m	22,03	22,27	22,75

LRA0451 bis LRA0951

	LRA			0451	0551	0651	0751	0851	0951
Bemessungsstrom		I nA	Α	1000	1200	1400	1600	2000	2500
Schutzart					ΙP	68			
Bei 50 Hz und +20° C	Wirkwiderstand	R ₂₀	mΩ/m	0,060	0,048	0,040	0,030	0,024	0,020
Schienentemperatur	Blindwiderstand	X ₂₀	mΩ/m	0,055	0,050	0,042	0,046	0,031	0,029
	Impedanzbelag	Z ₂₀	mΩ/m	0,081	0,070	0,058	0,055	0,040	0,035
Bei 50 Hz und Enderwär-	Wirkwiderstand	Rwarm	mΩ/m	0,074	0,059	0,050	0,036	0,029	0,026
mung der Schiene	Blindwiderstand	χ_{warm}	mΩ/m	0,055	0,050	0,042	0,046	0,031	0,029
	Impedanzbelag	Z_{warm}	mΩ/m	0,094	0,079	0,066	0,059	0,043	0,038
Für 5-polige (PE)Systeme im Fehlerfall nach	Wechselstromwider- standsbelag PE	R _F	mΩ/m	0,149	0,119	0,099	0,073	0,060	0,051
EN 61439-6 Anhang N	Blindwiderstandsbelag PE	XF	mΩ/m	0,132	0,106	0,088	0,082	0,105	0,106
	Impedanzbelag PE	Z_{F}	mΩ/m	0,199	0,159	0,133	0,110	0,121	0,118
Für 5-polige (N) Systeme im Fehlerfall nach	Wechselstromwider- standsbelag N	R _F	mΩ/m	0,149	0,119	0,099	0,073	0,060	0,051
EN 61439-6 Anhang N	Blindwiderstandsbelag N	X_{F}	mΩ/m	0,147	0,118	0,098	0,091	0,116	0,118
	Impedanzbelag N	Z _F	mΩ/m	0,167	0,167	0,139	0,117	0,131	0,129
Nullimpedanz für 5-polige	Wirkwiderstand 1 N	R ₀	mΩ/m	0,188	0,151	0,126	0,092	0,076	0,065
Systeme (N) nach DIN VDE 0102, IEC 909	Blindwiderstandsbelag 1 N	X ₀	mΩ/m	0,568	0,454	0,379	0,352	0,339	0,326
	Impedanzbelag N	Z ₀	mΩ/m	0,598	0,479	0,399	0,364	0,348	0,333
Nullimpedanz für 5-polige	Wirkwiderstand 2 PE	R ₀	mΩ/m	0,198	0,159	0,132	0,097	0,080	0,068
Systeme (PE) nach DIN VDE 0102, IEC 909	Blindwiderstandsbelag 2 PE	X ₀	mΩ/m	0,355	0,284	0,237	0,220	0,212	0,204
	Impedanzbelag 2 PE	Z ₀	mΩ/m	0,407	0,325	0,271	0,240	0,227	0,215
Kurzschlussfestigkeit									
Bemessungskurzzeitstromfe	stigkeit	/ pk	kA	55,7	117	117	143	143	143
Bemessungskurzzeitstrom- festigkeit	t = 1 s	/ _{cw}	kA	26,5	53	53	65	65	65
Leitermaterial					Alum	inium			
Leiterquerschnitt	N		mm2	472	592	712	944	1184	1424
Leiterquerschnitt aktive Leite	er		mm2	472	592	712	944	1184	1424
Leiterquerschnitt	PE		mm2	472	592	712	944	1184	1424
Brandlast			kWh/m	18,69	22,84	25,33	32,71	38,04	43,48
Befestigungsabstände			m	1,5	1,5	1,5	1,5	1,5	1,5
Gewicht (Bei 2 m Länge mit	Klemmverbindung)		kg/m	34,26	40,04	45,04	56,79	67,80	79,30

LRA2751 bis LRA2951

LI	RA			2751	2851	2951
Bemessungsstrom		<i>I</i> _{nA}	Α	3200	4000	5000
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentemperatur	Wirkwiderstand	R ₂₀	mΩ/m	0,015	0,012	0,010
	Blindwiderstand	X ₂₀	mΩ/m	0,024	0,026	0,023
	Impedanzbelag	Z ₂₀	mΩ/m	0,028	0,029	0,025
Bei 50 Hz und Enderwärmung der Schienen	Wirkwiderstand	R _{warm}	mΩ/m	0,019	0,015	0,013
	Blindwiderstand	X _{warm}	mΩ/m	0,024	0,026	0,023
	Impedanzbelag	Z_{warm}	mΩ/m	0,031	0,030	0,026
Für 5-polige Systeme (PE) im Fehlerfall nach EN 61439-6 Anhang N	Wechselstromwider- standsbelag PE	R _F	mΩ/m	0,038	0,030	0,025
	Blindwiderstandsbelag PE	XF	mΩ/m	0,084	0,076	0,061
	Impedanzbelag PE	Z_{F}	mΩ/m	0,092	0,082	0,066
Für 5-polige Systeme (N) im Fehlerfall nach EN 61439-6 Anhang N	Wirkwiderstandsbelag N	R_F	mΩ/m	0,038	0,030	0,025
	Blindwiderstandsbelag N	X_F	mΩ/m	0,093	0,084	0,068
	Impedanzbelag N	Z _F	mΩ/m	0,100	0,089	0,073
Nullimpedanz für 5-polige Systeme (PE)	Wirkwiderstand 1 N	R ₀	mΩ/m	0,048	0,039	0,032
nach DIN VDE 0102, IEC 909	Blindwiderstand 1 N	X ₀	mΩ/m	0,316	0,307	0,267
	Impedanzbelag 1 N	Z ₀	mΩ/m	0,319	0,310	0,269
Nullimpedanz für 5-polige Systeme (PE)	Wirkwiderstand 2 PE	R_0	mΩ/m	0,051	0,041	0,034
nach DIN VDE 0102, IEC 909	Blindwiderstand 2 PE	X_0	mΩ/m	0,197	0,192	0,167
	Impedanzbelag 2 PE	Z_0	mΩ/m	0,204	0,196	0,170
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	220	220	220
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw	kA	100	100	100
Leitermaterial				Aluminium		
Leiterquerschnitt	N		mm2	1889	2368	2849
Leiterquerschnitt aktive Leiter			mm2	1889	2368	2849
Leiterquerschnitt	PE		mm2	1889	2368	2849
Brandlast			kWh/m	65,43	76,08	86,96
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (bei 2 m Länge mit Klemmverbindun	g)		kg/m	113,59	135,59	158,59

Widerstandbeläge aus Messungen / Ableitungen

6.3.4 Schienenkästen LRC..41 (4-polig, Kupfer)

LRC0141 bis LRC0341

I	_RC			0141	0241	0341
Bemessungsstrom		I nA	Α	630	800	1000
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentemperatur	Wirkwiderstand	R ₂₀	mΩ/m	0,099	0,074	0,049
	Blindwiderstand	X ₂₀	mΩ/m	0,068	0,058	0,057
	Impedanzbelag	Z ₂₀	mΩ/m	0,120	0,094	0,075
Bei 50 Hz und Enderwärmung der Schie-	Wirkwiderstand	R _{warm}	mΩ/m	0,119	0,093	0,062
nen	Blindwiderstand	X_{warm}	mΩ/m	0,106	0,085	0,069
	Impedanzbelag	Z_{warm}	mΩ/m	0,159	0,126	0,092
Für 4-polige Systeme im Fehlerfall nach	Wirkwiderstandsbelag	R_F	mΩ/m	0,197	0,15	0,117
EN 61439-6 Anhang N	Blindwiderstandsbelag	X_{F}	mΩ/m	0,231	0,191	0,16
	Impedanzbelag	Z_F	mΩ/m	0,304	0,243	0,198
Nullimpedanz für 4-polige Systeme nach	Wirkwiderstand	R ₀	mΩ/m	0,275	0,217	0,173
DIN VDE 0102, IEC 909	Blindwiderstand	X_0	mΩ/m	0,269	0,227	0,193
iür 4-polige Systeme im Fehlerfall nach EN 61439-6 Anhang N Jullimpedanz für 4-polige Systeme nach DIN VDE 0102, IEC 909 Kurzschlussfestigkeit Bemessungsstoßstromfestigkeit Bemessungskurzzeitstromfestigkeit eitermaterial	Impedanzbelag	Z ₀	mΩ/m	0,385	0,313	0,259
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	48	48	80
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw	kA	23	23	38
Leitermaterial				Kupfer		
Leiterquerschnitt	PEN		mm²	176	236	354
Leiterquerschnitt aktive Leiter			mm²	176	236	354
Brandlast			kWh/m	13,01	12,59	11,76
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (bei 2 m Länge mit Klemmverbindu	ng)		kg/m	25,24	26,93	30,31

6.3 Technische Daten

LRC0441 bis LRC0941

	LRC			0441	0541	0641	0741	0841	0941
Bemessungsstrom		/ nA	Α	1350	1600	1700	2000	2500	3200
Schutzart					ΙP	68			
Bei 50 Hz und +20 °C	Wirkwiderstand	R ₂₀	mΩ/m	0,039	0,031	0,026	0,021	0,017	0,015
Schienentemperatur	Blindwider- stand	X ₂₀	mΩ/m	0,051	0,046	0,038	0,034	0,031	0,029
	Impedanzbelag	Z ₂₀	mΩ/m	0,065	0,056	0,046	0,040	0,035	0,033
Bei 50 Hz und Ender-	Wirkwiderstand	R _{warm}	mΩ/m	0,050	0,040	0,031	0,025	0,020	0,018
wärmung der Schienen	Blindwider- stand	X _{warm}	mΩ/m	0,051	0,046	0,038	0,034	0,031	0,029
	Impedanzbelag	Z_{warm}	mΩ/m	0,071	0,061	0,049	0,042	0,037	0,034
Für 4-polige Systeme im Fehlerfall nach	Wirkwider- standsbelag	R_F	mΩ/m	0,094	0,075	0,060	0,048	0,038	0,031
EN 61439-6 Anhang N	Blindwider- standsbelag	XF	mΩ/m	0,136	0,116	0,098	0,084	0,071	0,060
	Impedanzbelag	Z_{F}	mΩ/m	0,165	0,138	0,115	0,096	0,081	0,068
Nullimpedanz für 4- polige Systeme nach	Wirkwiderstand PEN	R ₀	mΩ/m	0,142	0,116	0,095	0,078	0,064	0,053
DIN VDE 0102, IEC 909	Blindwider- stand PEN	X ₀	mΩ/m	0,164	0,139	0,119	0,101	0,086	0,073
	Impedanzbelag PEN	Z ₀	mΩ/m	0,217	0,182	0,152	0,128	0,107	0,090
Kurzschlussfestigkeit									
Bemessungsstoßstromfes	stigkeit	/ pk	kA	80	140	140	140	176	176
Bemessungskurzzeit- stromfestigkeit	t = 1 s	I _{cw}	kA	38	65	65	65	80	80
Leitermaterial					Kuj	ofer			
Leiterquerschnitt	PEN		mm²	472	592	712	944	1184	1424
Leiterquerschnitt aktive Le	eiter		mm²	472	592	712	944	1184	1424
Brandlast			kWh/m	15,72	19,19	21,32	27,51	32,05	36,68
Befestigungsabstände			m	1,5	1,5	1,5	1,5	1,5	1,5
Gewicht (Bei 2 m Länge r	nit Klemmverbindu	ung)	kg/m	40,56	47,39	55,69	71,72	86,59	102,34

LRC2741 bis LRC2941

LF	RC			2741	2841	2941
Bemessungsstrom		/ nA	Α	4000	5000	6300
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentemperatur	Wirkwiderstand	R ₂₀	mΩ/m	0,010	0,008	0,006
	Blindwiderstand	X ₂₀	mΩ/m	0,014	0,013	0,011
	Impedanzbelag	Z ₂₀	mΩ/m	0,017	0,015	0,013
Bei 50 Hz und Enderwärmung der Schienen	Wirkwiderstand	R _{warm}	mΩ/m	0,013	0,010	0,008
	Blindwiderstand	X_{warm}	mΩ/m	0,014	0,013	0,011
	Impedanzbelag	Z_{warm}	mΩ/m	0,019	0,016	0,014
Für 4-polige Systeme im Fehlerfall nach	Wirkwiderstandsbelag	R_F	mΩ/m	0,022	0,018	0,014
EN 61439-6 Anhang N	Blindwiderstandsbelag	X_{F}	mΩ/m	0,054	0,046	0,039
	Impedanzbelag	Z_F	mΩ/m	0,059	0,049	0,041
Nullimpedanz für 4-polige Systeme nach	Wirkwiderstand PEN	R ₀	mΩ/m	0,046	0,038	0,031
DIN VDE 0102, IEC 909	Blindwiderstand PEN	X_0	mΩ/m	0,067	0,057	0,048
	Impedanzbelag PEN	Z ₀	mΩ/m	0,082	00 5000 63 68 10 0,008 0,0 14 0,013 0,0 17 0,015 0,0 13 0,010 0,0 14 0,013 0,0 19 0,016 0,0 22 0,018 0,0 22 0,018 0,0 25 0,049 0,0 36 0,038 0,0 37 0,057 0,0 32 0,068 0,0 30 220 22 0 100 10 0 10 0 10 0 21 2368 28 0 2368 28 0 1 64,11 73	0,057
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA]	220	220	220
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw		100	100	100
Leitermaterial				Kupfer		
Leiterquerschnitt	PEN		mm²	1889	2368	2849
Leiterquerschnitt aktive Leiter			mm²	1889	2368	2849
Brandlast			kWh/m	55,01	64,11	73,36
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (Bei 2 m Länge mit Klemmverbindun	g)		kg/m	140,49	171,99	186,69

Widerstandbeläge aus Messungen / Ableitungen

6.3.5 Schienenkästen LRC..51 (5-polig, Kupfer)

LRC0151 bis 0351

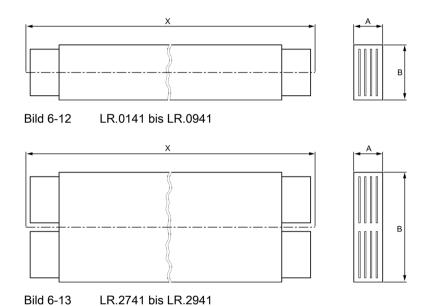
LRC				0151	0251	0351
Bemessungsstrom		/ nA	Α	630	800	1000
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentempe-	Wirkwiderstand	R ₂₀	mΩ/m	0,099	0,074	0,049
ratur	Blindwiderstand	X ₂₀	mΩ/m	0,068	0,058	0,057
	Impedanzbelag	Z ₂₀	mΩ/m	0,120	0,094	0,075
Bei 50 Hz und Enderwärmung der	Wirkwiderstand	R _{warm}	mΩ/m	0,119	0,093	0,062
Schienen	Blindwiderstand	X _{warm}	mΩ/m	0,106	0,085	0,069
	Impedanzbelag	Z_{warm}	mΩ/m	0,159	0,126	0,092
Für 5-polige Systeme (PE) im Fehler- fall nach EN 61439-6 Anhang N	Wechselstromwiderstandsbelag PE	R _F	mΩ/m	0,197	0,150	0,117
	Blindwiderstandsbelag PE	XF	mΩ/m	0,231	0,191	0,16
	Impedanzbelag PE	Z _F	mΩ/m	0,304	0,243	0,198
Für 5-polige Systeme (N) im Fehlerfall	Wirkwiderstandsbelag N	R _F	mΩ/m	0,197	0,150	0,117
nach EN 61439-6 Anhang N	Blindwiderstandsbelag N	XF	mΩ/m	0,231	0,191	0,16
	Impedanzbelag N	Z _F	mΩ/m	0,304	0,243	0,198
Nullimpedanz für 5-polige Systeme	Wirkwiderstand 1 N	R ₀	mΩ/m	0,275	0,217	0,173
(PE) nach DIN VDE 0102, IEC 909	Blindwiderstand 1 N	X ₀	mΩ/m	0,269	0,227	0,193
	Impedanzbelag 1 N	Z ₀	mΩ/m	0,385	0,313	0,259
Nullimpedanz für 5-polige Systeme	Wirkwiderstand 2 PE	R ₀	mΩ/m	0,275	0,217	0,173
(PE) nach DIN VDE 0102, IEC 909	Blindwiderstand 2 PE	X ₀	mΩ/m	0,269	0,227	0,193
	Impedanzbelag 2 PE	Z ₀	mΩ/m	0,385	0,313	0,259
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	48	48	80
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw	kA	23	23	38
Leitermaterial				Kupfer		
Leiterquerschnitt	N	-	mm²	176	236	354
Leiterquerschnitt aktive Leiter			mm²	176	236	354
Leiterquerschnitt	PE	_	mm²	176	236	354
Brandlast			kWh/m	12,70	12,17	11,13
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (Bei 2 m Länge mit Klemmverb	pindung)		kg/m	26,70	28,82	33,04

LRC0451 bis LRC0951

LRC	;			0451	0551	0651	0751	0851	0951
Bemessungsstrom		/ _{nA}	A	1350	1600	1700	2000	2500	3200
Schutzart					ΙΡ	68			
Bei 50 Hz und +20 °C	Wirkwiderstand	R ₂₀	mΩ/m	0,039	0,031	0,026	0,021	0,017	0,015
Schienentemperatur	Blindwiderstand	X ₂₀	mΩ/m	0,051	0,046	0,038	0,034	0,031	0,029
	Impedanzbelag	Z ₂₀	mΩ/m	0,065	0,056	0,046	0,040	0,035	0,033
Bei 50 Hz und Ender-	Wirkwiderstand	Rwarm	mΩ/m	0,050	0,040	0,031	0,025	0,020	0,018
wärmung der Schiene	Blindwiderstand	χ_{warm}	mΩ/m	0,051	0,046	0,038	0,034	0,031	0,029
	Impedanzbelag	Z_{warm}	mΩ/m	0,071	0,061	0,049	0,042	0,037	0,034
Für 5-polige (PE) Syste- me im Fehlerfall nach	Wechselstromwid- erstandsbelag PE	R _F	mΩ/m	0,094	0,075	0,060	0,048	0,038	0,031
EN 61439-6 Anhang N	Blindwiderstandsbe- lag PE	X _F	mΩ/m	0,150	0,127	0,108	0,092	0,078	0,066
	Impedanzbelag PE	Z_F	mΩ/m	0,176	0,148	0,124	0,104	0,087	0,073
Für 5-polige (N) Systeme im Fehlerfall nach	Wechselstromwid- erstandsbelag N	R _F	mΩ/m	0,094	0,075	0,060	0,048	0,038	0,031
EN 61439-6 Anhang N	Blindwiderstandsbelag N	X _F	mΩ/m	0,136	0,116	0,098	0,084	0,071	0,060
	Impedanzbelag N	Z_{F}	mΩ/m	0,165	0,138	0,115	0,096	0,081	0,068
Nullimpedanz für 5-polige	Wirkwiderstand 1 N	R ₀	mΩ/m	0,163	0,134	0,110	0,090	0,074	0,060
Systeme (N) nach DIN VDE 0102, IEC 909	Blindwiderstandsbelag 1 N	X ₀	mΩ/m	0,328	0,279	0,237	0,201	0,171	0,146
	Impedanzbelag N	Z_0	mΩ/m	0,366	0,309	0,261	0,221	0,186	0,158
Nullimpedanz für 5-polige Systeme (PE) nach	Wirkwiderstand 2 PE	R ₀	mΩ/m	0,142	0,116	0,095	0,078	0,064	0,053
DIN VDE 0102, IEC 909	Blindwiderstandsbelag 2 PE	X ₀	mΩ/m	0,164	0,139	0,119	0,101	0,086	0,073
	Impedanzbelag 2 PE	Z ₀	mΩ/m	0,217	0,182	0,152	0,128	0,107	0,090
Kurzschlussfestigkeit									
Bemessungskurzzeitstrom	festigkeit	/ pk	kA	80	140	140	140	176	176
Bemessungskurzzeit- stromfestigkeit	t = 1 s	/ cw	kA	38	65	65	65	80	80
Leitermaterial					Kuj	ofer			
Leiterquerschnitt	N	-	mm²	472	592	712	944	1184	1424
Leiterquerschnitt aktive Le	iter		mm²	472	592	712	944	1184	1424
Leiterquerschnitt PE			mm²	472	592	712	944	1184	1424
Brandlast			kWh/m	18,69	22,84	25,33	32,71	38,04	43,48
Befestigungsabstände			m	1,5	1,5	1,5	1,5	1,5	1,5
Gewicht (Bei 2 m Länge m	nit Klemmverbindung)		kg/m	48,77	58,09	67,03	86,77	104,94	123,99

LRC2751 bis LRC2951

	LRC			2751	2851	2951
Bemessungsstrom		/ nA	Α	4000	5000	6300
Schutzart				IP68		
Bei 50 Hz und +20 °C Schienentempe-	Wirkwiderstand	R ₂₀	mΩ/m	0,010	0,008	0,006
ratur	Blindwiderstand	X ₂₀	mΩ/m	0,014	0,013	0,011
	Impedanzbelag	Z ₂₀	mΩ/m	0,017	0,015	0,013
Bei 50 Hz und Enderwärmung der	Wirkwiderstand	R _{warm}	mΩ/m	0,013	0,010	0,008
Schienen	Blindwiderstand	X _{warm}	mΩ/m	0,014	0,013	0,011
	Impedanzbelag	Z_{warm}	mΩ/m	0,019	0,016	0,014
Für 5-polige Systeme (PE) im Fehler- fall nach EN 61439-6 Anhang N	Wechselstromwiderstandsbelag PE	R _F	mΩ/m	0,022	0,018	0,014
	Blindwiderstandsbelag PE	XF	mΩ/m	0,059	0,050	0,043
	Impedanzbelag PE	Z _F	mΩ/m	0,063	0,053	0,045
Für 5-polige Systeme (N) im Fehlerfall	Wirkwiderstandsbelag N	R_F	mΩ/m	0,022	0,018	0,014
nach EN 61439-6 Anhang N	Blindwiderstandsbelag N	XF	mΩ/m	0,054	0,046	0,039
	Impedanzbelag N	Z _F	mΩ/m	0,059	0,049	0,041
Nullimpedanz für 5-polige Systeme	Wirkwiderstand 1 N	R ₀	mΩ/m	0,053	0,043	0,036
(PE) nach DIN VDE 0102, IEC 909	Blindwiderstand 1 N	X ₀	mΩ/m	0,134	0,114	0,097
	Impedanzbelag 1 N	Z ₀	mΩ/m	0,144	0,122	0,103
Nullimpedanz für 5-polige Systeme	Wirkwiderstand 2 PE	R ₀	mΩ/m	0,046	0,038	0,031
(PE) nach DIN VDE 0102, IEC 909	Blindwiderstand 2 PE	X ₀	mΩ/m	0,067	0,057	0,048
	Impedanzbelag 2 PE	Z ₀	mΩ/m	0,082	0,068	0,057
Kurzschlussfestigkeit						
Bemessungsstoßstromfestigkeit		/ pk	kA	220	220	220
Bemessungskurzzeitstromfestigkeit	t = 1 s	/ cw	kA	100	100	100
Leitermaterial				Kupfer		
Leiterquerschnitt	N	-	mm ²	1889	2368	2849
Leiterquerschnitt aktive Leiter			mm²	1889	2368	2849
Leiterquerschnitt	PE	-	mm²	1889	2368	2849
Brandlast			kWh/m	65,43	76,08	86,96
Befestigungsabstände			m	1,5	1,5	1,5
Gewicht (bei 2 m Länge mit Klemmverb	: al a.\		kg/m	170,30	208,77	264,47


Widerstandbeläge aus Messungen / Ableitungen

6.4 Maßzeichnungen

Soweit nicht anders angegeben, sind alle Maße in mm.

6.4.1 Gerade Schienenelemente LR

4-Leitersystem

 System
 A [mm]
 B [mm]
 X [mm]

 LR.0141
 90
 90
 300 ... 3000

 LR.0241

LR.0241			
LR.0341			
LRC.441	100	110	
LR.0541		130	
LR.0641		150	
LR.0741		190	
LR.0841		230	
LR.0941		270	
LR.2741		380	
LR.2841		460	
LR.2941		540	

5-Leitersystem

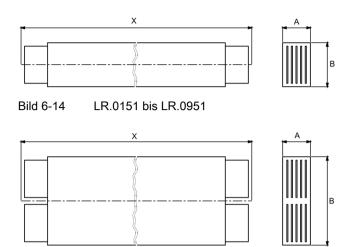


Bild 6-15 LR.2751 bis LR.2951

System	A [mm]	B [mm]	X [mm]
LR.0151	90	90	300 3000
LR.0251			
LR.0351			
LR.0451	120	110	
LR.0551		130	
LR.0651		150	
LR.0751		190	
LR.0851		230	
LR.0951		270	
LR.2751		380	
LR.2851		460	
LR.2951		540	

Weiterführende Informationen zur Planung

7

7.1 Dimensionierung und Auswahl

7.1.1 Ermittlung des Spannungsfalls

Formel für den Spannungsfall

Bei großen Stranglängen kann es notwendig werden, den Spannungsfall zu berechnen:

$$\Delta U = k \cdot \sqrt{3} \cdot I_B \cdot I \cdot \left(R_1 \cdot \cos \varphi + X_1 \cdot \sin \varphi \right) \cdot 10^{-3}$$

 ΔU = Spannungsfall (V)

 I_{B} = Bemessungsstrom (A)

/ = Gesamtlänge des Systems (m)

k = Belastungsverteilungsfaktor

 R_1 = ohm'scher Widerstand (m Ω /m) bei Schienenenderwärmung

 X_1 = induktiver Widerstand (m Ω /m) bei Schienenenderwärmung

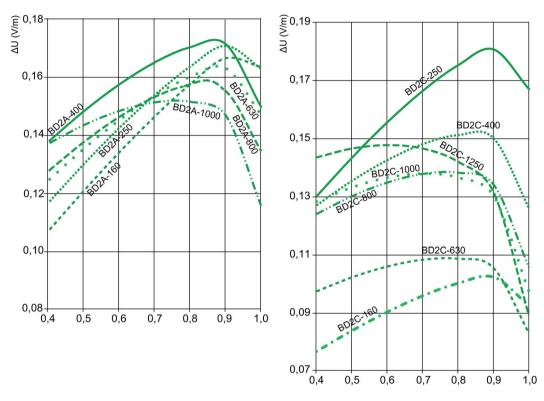
cos φ = Leistungsfaktor

Der Belastungsverteilungsfaktor k für die Berechnung des Spannungsfalls am Ende des Schienenverteilersystems ist wie folgt definiert:

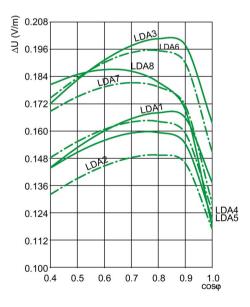
- k = 1, wenn die Last auf das Ende Schienenverteilersystem konzentriert ist (Energietransport).
- k = (n +1) / (2 x n), wenn die Last gleichmäßig auf n Abzweige verteilt ist.

Falls Sie den Spannungsfall im Abstand d zwischen dem Anfang eines Abzweigs und dem Anfang des Schienensystems berechnen wollen, gilt:

• $k = (2 \times n + 1 - n \times d/L) / (2 \times n)$

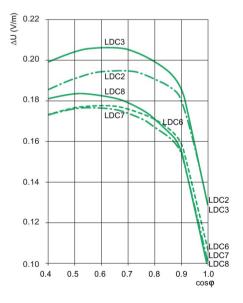

Spannungsfalldiagramme

Die folgenden Diagramme zeigen den Spannungsfall der Systeme BD2, LD, LI und LR

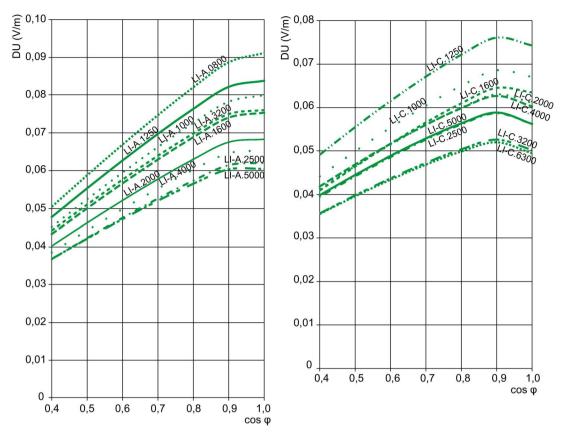

- unter Berücksichtigung der Warmwiderstände (entsprechend EN 61439-6)
- bei einem Belastungsverteilungsfaktor
 - k = 1 für LD und LR
 - k = 0.5 für BD2 und LI
- bei Belastung mit dem Bemessungsstrom. (Bei einem anderen Stromverteilungsfaktor muss der Kurvenwert mit dem entsprechenden Verteilungsfaktor multipliziert werden).

7.1 Dimensionierung und Auswahl

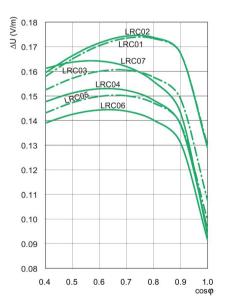
Bei Anlagen mit ungleichmäßig verteilter Last verweisen wir auf das Kurzschluss- und Lastfluss-Berechnungsprogramm SIMARIS design (siehe Kapitel "Tools und Dienstleistungen (Seite 307) ").



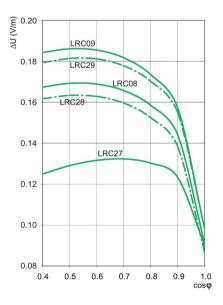
Spannungsfall BD2A



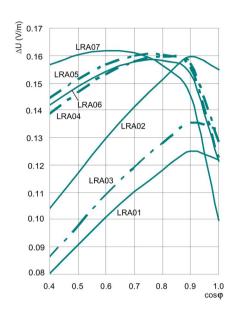
Spannungsfall LDA

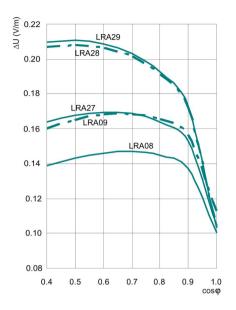

Spannungsfall BD2C

Spannungsfall LDC



Spannungsfall LI-A


Spannungsfall LRC01 bis LRC07


Spannungsfall LI-C

Spannungsfall LRC08 bis LRC29

7.1 Dimensionierung und Auswahl

Spannungsfall LRA01 bis LRA07

Spannungsfall LRA08 bis LRA29

7.1.2 Überlast- und Kurzschluss-Schutz

Schienenverteiler müssen gegen Kurzschluss und Überlast geschützt werden. Als Schutzorgane kommen Sicherungen und Leistungsschalter zur Anwendung. Bei der Auswahl der Schutzgeräte können die Höhe der zu erwartenden Kurzschluss-Ströme, Selektivitätsanforderungen oder Bedien- und Meldefunktionen mit entscheidend sein.

Bei der Festlegung des Kurzschluss-Schutzes durch Sicherungen und Leistungsschalter dürfen die angegebenen Kurzschlussfestigkeiten der Schienenverteiler nicht überschritten werden. Von der Höhe des zu erwartenden Kurzschluss-Stroms hängt ab, ob ein Strom begrenzendes Schutzorgan erforderlich ist und welches Kurzschluss-Ausschaltvermögen das Schutzorgan haben muss.

Nachstehend sehen Sie eine tabellarische Übersicht der Leistungsschalter, die den Kurzschluss- und Überlastschutz (400 V und 50 Hz) des entsprechenden Schienensystems übernehmen können.

Im Allgemeinen gilt:

 $I_{k}^{"} \leq I_{cc} \leq I_{cu}$

/'k = zu erwartender Kurzschluss-Strom am Einbauort

Icc = bedingter Bemessungskurzschluss-Strom des Schienenstrangs

Lu = Bemessungskurzschluss-Ausschaltvermögen des Leistungsschalters

Tabelle 7- 1 Leistungsschalter, die den Kurzschluss- und Überlastschutz (400 V und 50 Hz) des entsprechenden Schienensystems übernehmen können¹⁾

Тур	Be- mes- sungs strom	LS mit normalem Schaltvermögen	Berr sunç kurz schl Stro	gs- - uss-	LS mit starkem Schaltvermögen	Berr sunç kurz schl Stro	gs- :- uss-	LS mit hohem Schaltvermögen	Bem sung kurz- schlu Stror	S- - ISS-
	/ n		/ cu	/ cc		/ cu	/ cc		/ cu	/ cc
	Α		kA	kA		kA	kA		kA	kA
BD2A(C)-160	160	3VL27 16-1	40	20	3VL27 16-2	70	20	3VL27 16-3	100	20
BD2A(C)-250	250	3VL37 25-1	40	40	3VL37 25-2	70	50	3VL37 25-3	100	50
BD2A(C)-400	400	3VL47 40-1	45	45	3VL47 40-2	70	45	3VL47 40-3	100	45
BD2A(C)-630	630	3VL57 63-1DC36	45	45	3VL57 63-2DC36	70	70	3VL57 63-3DC36	100	100
BD2A(C)-800	800	3VL57 80-1SE36	-	50	3VL57 80-2SE36	70	70	3VL57 80-3SE36	100	100
BD2A(C)-1000	1000	3VL77 10-1SE36	-	50	3VL77 10-2SE36	70	60	3VL77 10-3SE36	100	60
BD2C-1250	1250	3VL77 12-1SE36	-	50	3VL77 12-2SE36	70	60	3VL77 12-3SE36	100	60

Die Auslösecharakteristik des Schutzorgans ist entsprechend der Kurzschlussfestigkeit der Schienensysteme, der Netzform, Art und Anzahl der Verbraucher sowie den länderspezifischen Vorgaben und Typserien zu wählen. Diese Tabelle enthält nur eine kurze Übersicht zu BD2 zum Einsatz von Leistungsschaltern für den Schutz vor Kurzschluss und Überlast und dient nur als Empfehlung. Grundsätzlich empfehlen wir zur Ermittlung des geeigneten Schutzes eine Berechnung mit dem Netzberechnungsprogramm SIMARIS design durchzuführen. Wenden Sie sich hierzu an unsere TIP-Spezialisten.

²⁾ Die Werte für den bedingten Bemessungskurzschluss-Strom I_{cc} gelten für die Schienenverteiler-Systeme ohne Berücksichtigung der Abgangskästen.

7.1.3 Schleifenimpedanz

Da die Größe der Schleifenimpedanz maßgeblich für die Höhe des 1-poligen Kurzschluss-Stroms ist, schreibt die DIN VDE 0100-600 vor, die Schleifenimpedanz zu ermitteln zwischen:

- Außenleiter und Schutzleiter oder
- Außenleiter und PEN-Leiter

Der Wert darf ermittelt werden durch:

- Messung mit Messgeräten oder
- Rechnung oder
- Nachbildung des Netzes am Netzmodell

Die Schleifenimpedanzen einer Schienenanlage stellen einen Bestandteil der Gesamtschleifenimpedanz dar. Die Impedanzwerte für die Berechnung der Schleifenimpedanzen einer Schienenanlage finden Sie in folgenden Kapiteln:

- Für die Schienenverteiler BD2 im Kapitel "Technische Daten (Seite 62)"
- Für die Schienenverteiler LD im Kapitel "Technische Daten (Seite 128)"
- Für die Schienenverteiler LI im Kapitel "Technische Daten (Seite 197)"
- Für die Schienenverteiler LR im Kapitel "Technische Daten (Seite 252)"

Aufwändig ist es, die Schleifenimpedanz aller dazu beitragenden Betriebsmittel einer Anlage (Netzeinspeisung, Transformatoren, Verteiler, Kabelstrecken etc.) zu ermitteln. Hier reduziert die Verwendung einer Netzberechnungssoftware, wie SIMARIS design, die die notwendigen Daten der gängigen elektrischen Betriebsmittel in einer Datenbank enthält, maßgeblich den Planungsaufwand.

7.1.4 Schutzarten für Schienenverteiler

Einsatz in feuergefährdeten Betriebsstätten

In feuergefährdeten Betriebsstätten werden nach europäischer Norm HD 384.4.482 S1 erhöhte Anforderungen an die Schutzart von elektrischen Betriebsmitteln gestellt. Wenn eine Feuergefährdung aufgrund der Art der verarbeiteten oder gelagerten Materialien besteht, muss bei möglicher Staubansammlung die Mindestschutzart IP5X entsprechen. Wenn kein Staub zu erwarten ist, gelten entsprechend die nationalen Vorschriften.

Die VdS Schadenverhütung des Gesamtverbands der Deutschen Versicherungswirtschaft fordert:

- Bei Feuergefährdung durch Staub oder / und Fasern: Schutzart IP5X
- Bei Feuergefährdung durch andere leicht entzündliche feste Fremdkörper mit einem Durchmesser von 1 mm und größer: Schutzart IP4X.

Die Schienenverteiler SIVACON 8PS entsprechen diesen Forderungen. Sie sind folglich für diesen Einsatz geeignet.

7.1.5 Schutzarten elektrischer Betriebsmittel gemäß IEC / EN 60529

Schutz-	1. Kennziffer		2. Kennziffer
art	Berührungsschutz	Fremdkörperschutz	Wasserschutz
IP00	Kein besonderer Schutz	Kein besonderer Schutz	Kein besonderer Schutz
IP20	Fernhalten von Fingern	Gegen Festkörper ≥ 12,5 mm	Kein besonderer Schutz
IP34	Fernhalten von Werkzeugen	Gegen Festkörper ≥ 2,5 mm	Keine schädliche Wirkung von Spritzwasser
IP41	Fernhalten von Draht	Gegen Festkörper ≥ 1 mm	Keine schädliche Wirkung von Tropfwasser (senkrechtes Tropfen)
IP43	Fernhalten von Draht	Gegen Festkörper ≥ 1 mm	Keine schädliche Wirkung von Sprühwasser
IP54	Fernhalten von Draht	Gegen schädliche Staubabla- gerungen im Innern (staubge- schützt)	Keine schädliche Wirkung von Spritzwasser
IP55	Fernhalten von Draht	Gegen schädliche Staubabla- gerungen im Innern (staubge- schützt)	Keine schädliche Wirkung von Strahlwasser
IP65	Fernhalten von Draht	Gegen Eindringen von Staub (staubdicht)	Keine schädliche Wirkung von Strahlwasser
IP66	Fernhalten von Draht	Gegen Eindringen von Staub (staubdicht)	Wasser darf bei vorübergehender Überflutung nicht in schädlichen Mengen eindringen (starkes Strahlwasser)
IP67	Fernhalten von Draht	Gegen Eindringen von Staub (staubdicht)	Wasser darf beim Eintauchen nicht in schädlichen Mengen eindringen (zeitweiliges Untertauchen)
IP68	Fernhalten von Draht	Gegen Eindringen von Staub (staubdicht)	Wasser darf beim Untertauchen für unbestimmte Zeit nicht in schädlichen Mengen eindringen (dauerndes Untertauchen)

Berührungsschutz nach DIN EN 50274

Diese Regelungen gelten für das Gestalten elektrischer Betriebsmittel und deren Anordnung in elektrischen Anlagen mit Bemessungsspannung bis AC 1000 V bzw. DC 1500 V – hinsichtlich des Schutzes gegen direktes Berühren, sofern Betätigungselemente (Drucktasten, Kipphebel, etc.) in der Nähe berührungsgefährlicher Teile angebracht sind.

Der Berührungsschutz "Fingersicherheit" bezieht sich nur auf das Betätigungselement in Betätigungsrichtung. Dabei muss, ausgehend vom Mittelpunkt, im Umkreis des Betätigungselements zu berührungsgefährlichen Teilen ein Abstand mit Radius r = 30 mm sichergestellt sein. Die Schutzart IP20 ist mehr als der Berührungsschutz "fingersicher". Sie beinhaltet den Berührungsschutz von elektrischen Betriebsmitteln aus allen Richtungen. Für Geräte mit Berührungsschutz "Fingersicherheit" und Schutzart IP00 kann auf Wunsch ein erweiterter Berührungsschutz durch Abdeckungen erreicht werden.

7.1.6 Hinweise zu Leerabgangskästen bis 630 A

Wichtige Hinweise für Abgangskästen vorbereitet für den Einbau der SENTRON Kompaktleistungsschalter 3VL und für freie Bestückung

Auf Wunsch des Käufers wird der Abgangskasten SIVACON 8PS ... als Leerabgangskasten ohne Einbau von Zusatzgeräten, z. B. Schaltgeräten, geliefert. Als Leerabgangskasten wurde der Abgangskasten von der Firma Siemens fachmännisch montiert und gemäß IEC 61439 geprüft. Der Käufer hat den Leerabgangskasten eigenverantwortlich auszubauen und final zu bestücken. Dies schließt die Auswahl der Schaltgeräte mit ein.

Hinweis

Beachten Sie die Hinweise und Anweisungen der Firma Siemens als Hersteller des Leerabgangskastens.

- Die Verantwortung und Risiken für die Verwendung des Leerabgangskastens liegen allein beim Käufer.
- Der Käufer hat sämtliche anwendbare Vorschriften in den jeweiligen Ländern zu beachten. Insbesondere hat der Käufer das Produktsicherheitsgesetz eigenverantwortlich einzuhalten.
- Für die abschließende Stückprüfung des final bestückten Abgangskastens und die Gewährleistung des Abgangskastens ist der Käufer allein verantwortlich.
- Der Käufer verpflichtet sich, die Firma Siemens von sämtlichen Ansprüchen Dritter aufgrund der durch den Käufer bestückten Abgangskästen freizustellen.
- Im Lieferumfang sind je Abgangskasten eine Ausbauanleitung für den Geräteeinbau und eine Montageanweisung für das Stecken auf das Schienensystem enthalten.

MARNUNG

Elektrische Spannung. Unsachgemäße Arbeit am Leerabgangskasten kann zu schwerer Körperverletzung oder Tod führen.

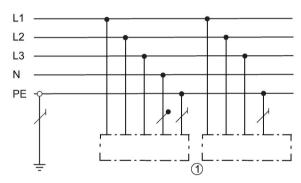
Führen Sie sämtliche Umbauten und Ausbauten nur am gezogenen - d. h. elektrisch nicht mit dem Schienensystem verbundenen - Leerabgangskasten durch.

Beachten Sie die fünf Sicherheitsregeln.

Nur entsprechend ausgebildete und geschulte Fachkräfte dürfen Umbauten und Ausbauten am Leerabgangskasten vornehmen.

Nicht Beachtung der maximal zulässigen Daten kann zu schwerer Körperverletzung oder Tod führen.

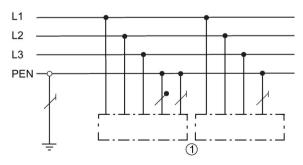
Die in der Ausbauanleitung angegebenen maximal zulässigen Daten dürfen aus Sicherheitsgründen nicht überschritten werden.


- Der endausgebaute Abgangskasten mit einem Kompaktleistungsschalter 3VL entspricht nur der Bauartprüfung des vergleichbaren, werkseitig bestückten Abgangskastens, wenn der Geräteeinbau gemäß der Ausbauanleitung und den Ausbaubedingungen erfolgt ist.
- Verfügbarkeit und Verkauf von Leerabgangskästen sind regional beschränkt. Die Erlaubnis und Freigabe sind je Region mit den zentralen Sales-Bereichen im Mutterhaus abzustimmen und einzuholen.

7.1.7 Verteilungssysteme

Bestimmung der Schutzmaßnahme und Auswahl der elektrischen Betriebsmittel entsprechend des Verteilungssystems

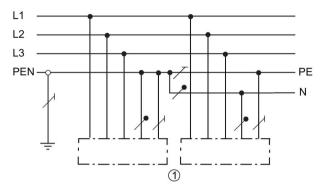
TN-Systeme


TN-S-System: Neutralleiter- und Schutzleiterfunktion sind im System durchgehend getrennt.

Körper

Bild 7-1 TN-S-System

TN-C-System: Neutralleiter- und Schutzleiterfunktion sind im gesamten System durchgehend zusammengefasst.

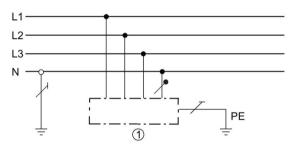


1 Körper

Bild 7-2 TN-C-System

7.1 Dimensionierung und Auswahl

TN-C-S-System: Kombination zwischen Neutralleiter- und Schutzleiterfunktion. Sie sind in einem Teil des Systems in einem Leiter vereinigt, im anderen Teil sind sie getrennt.



1 Körper

Bild 7-3 TN-C-S-System

TT-System

Im TT-System ist ein Punkt direkt geerdet; die Körper der elektrischen Anlage sind mit Erdern verbunden, die vom Betriebserder getrennt sind.

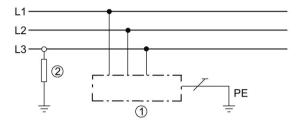

1 Körper

Bild 7-4 TT-System

IT-System

Das IT-System hat keine direkte Verbindung zwischen aktiven Leitern und geerdeten Teilen; die Körper der elektrischen Anlage sind geerdet.

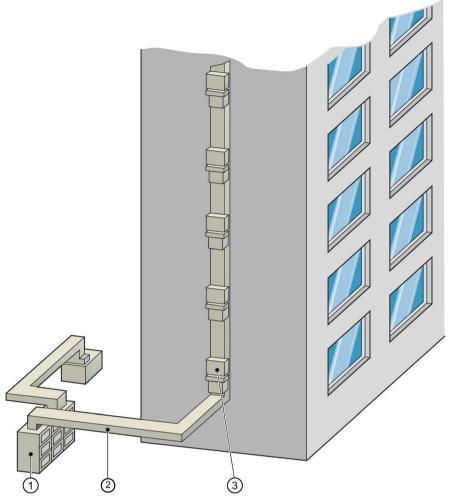
Das IT-System entspricht dem System, in dem heute die Schutzmaßnahme Schutzleitungssystem angewendet wird.

- 1 Körper
- ② Impedanz

Bild 7-5 IT-System

Erster Buchstabe: Erdungsbedingung der speisenden Stromquelle

- T = Direkte Erdung eines Punkts
- I = Entweder **Isolierung** aller aktiven Teile von Erde oder Verbindung eines Punkts mit Erde über eine Impedanz


Zweiter Buchstabe: Erdungsbedingung der Körper der elektrischen Anlage

- T = Körper **direkt geerdet**, unabhängig von der etwa bestehenden Erdung eines Punkts der Stromversorgung
- N = Körper direkt mit der **Betriebserde** verbunden, in Wechselstrom-Spannungsnetzen ist der geerdete Punkt im Allgemeinen der Sternpunkt

Weitere Buchstaben = Anordnung des Neutralleiters und des Schutzleiters

- S = Neutralleiter- und Schutzleiterfunktionen durch getrennte Leiter
- C = Neutralleiter- und Schutzleiterfunktionen kombiniert in einem Leiter (PEN)

7.2 Planungsbeispiel

- 1 Energieverteiler
- Schienenverteiler
- 3 Abgangsstelle

Bild 7-6 Energieversorgung eines Hochhauses

	Geplante Werte
Anzahl der Stockwerke	15 (je 8 Wohneinheiten)
Anschlusswerte je Wohneinheit	26 kW
Bemessungsbetriebsspannung Ue	400 V
Leistungsfaktor cos φ	0,9
Belastungsfaktor α	0,6
Gleichzeitigkeitsfaktor β	0,5
Speisende Transformatoren	1 x 1250 kVA, U_k = 6 %
Schutzart	IP30 / IP54
Netzform	TN-S

Ermittlung des Bemessungsstroms pro Stockwerk

$$I_{BS} = \frac{P_{inst} \cdot \alpha}{\sqrt{3} \cdot U_{e} \cdot cos\phi} \cdot 10^{3}$$

 I_{hS} = Bemessungsstrom pro Stockwerk [A] U_{e} = Bemessungsbetriebsspannung [V]

cos φ = Leistungsfaktor

P_{inst} = installierte Leistung [kW] α = Bemessungsbelastungsfaktor

$$I_{BS} = \frac{8 \cdot 26 \cdot 0.6}{\sqrt{3} \cdot 400 \cdot 0.9} \cdot 10^3 = 200A$$

Ermittlung des Bemessungsstroms des Schienenstrangs

Der Bemessungsbelastungsfaktor gemäß IEC / EN 61439-1 gilt für die Gesamtzahl der Verbraucher und der Gleichzeitigkeitsfaktor für die Art des Verbrauchers. Wenn keine genauen Angaben für den Gleichzeitigkeitsfaktor bekannt sind, können von den örtlichen VNBs gute Erfahrungswerte eingeholt werden. Sie sind jedoch regional unterschiedlich. In der folgenden Tabelle werden Durchschnittswerte angegeben:

Art der Verbraucher	β
Wohnungen mit Elektroherden und Warmwasserbereitern	0,1 0,2
Nachtstrom-Speicherheizung	0,8 1
Licht in Bürohäusern und in Gebäuden zur gewerblichen Nutzung	0,7 0,9
Aufzüge und Allgemeinanlagen	0,6 0,8
Versammlungsräume	0,6 0,8
Kleine Büros	0,5 0,7
Große Büros	0,4 0,8

Gemäß den Systemauswahlkriterien nach technischen Daten und Einsatzbereichen im Kapitel "Planungsgrundlagen (Seite 19)" kommt für dieses Beispiel das Hochstromsystem LI in der Planung zum Einsatz (Energieverteilung in mehrstöckigen Gebäuden mit überwiegend vertikalem Strangverlauf).

Werden die Bewertungskriterien und Berechnungen zusammengefasst, wird als Ergebnis ein Schienensystem LI-A, 5-Leiter mit vollem N-Leiterquerschnitt, einer Stromtragfähigkeit von 1600 A und einer Kurzschlussfestigkeit von l_{cw} (t = 1 s) 65 kA gewählt.

Gewähltes Schienensystem: LI-A.1600

Zur Einspeisung der Etagenverteiler kommen Abgangskästen mit 3-poligem Sicherungslastschalter 250 A (vorbereitet für den Einsatz von NH1-Sicherungspatronen) zur Anwendung.

Gewählter Abgangskasten: LI-T-0250-5H-55-FSF-IEC-3-RD-G-BD-00

7.3 Funktionserhalt

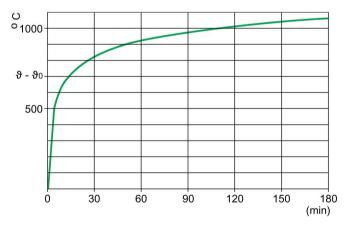
7.3.1 Geltende Vorschriften

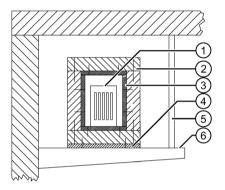
"Brandschutzeinrichtungen und Brandschutzvorkehrungen" für elektrische Anlagen sind insbesondere bei baulichen Anlagen besonderer Art und Nutzung erforderlich. Solche baulichen Anlagen sind z. B. Krankenhäuser oder Versammlungsstätten. Hierbei müssen die elektrischen Anlagen laut DIN VDE 0100-560 "Bauliche Anlagen für Menschenansammlungen" und DIN VDE 0100-710 (Vorgänger DIN VDE 0107) "Medizinisch genutzte Bereiche" bzw. den gesetzlichen Vorschriften der Länder auch bei einem Brand für bestimmte Zeiten funktionstüchtig bleiben. Das trifft insbesondere für folgende Anlagen zu:

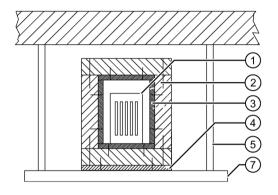
- Brandmeldeanlagen
- Anlagen zur Alarmierung und Erteilung von Anweisungen an Besucher und Beschäftigte
- Sicherheitsbeleuchtung
- Personenaufzugsanlagen mit Evakuierungsschaltung, die mindestens 30 Minuten unter Vollbrandbedingung im Zuleitungsbereich funktionsfähig bleiben müssen
- Wasserdruckerhöhungs-Anlagen zur Löschwasserversorgung
- Lüftungsanlagen von Sicherheitstreppen, Fahrschächten und Triebwerksräumen von Feuerwehraufzügen, für die Mindest-Funktionsfähigkeit von 90 Minuten sichergestellt sein muss.

Um den geforderten Funktionserhalt für Schienenverteiler anbieten zu können, wurden u. a. in Zusammenarbeit mit der Firma Promat erfolgreich Prüfungen für die Schienensysteme BD2, LD, LI und LR bei der Materialprüfanstalt Braunschweig und Leipzig durchgeführt.

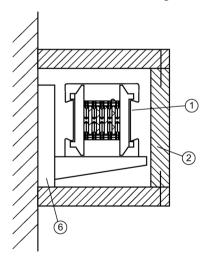
Bei der Brandprüfung wurden hierzu verschiedene Stromschienenverteiler mit einer Bekleidung aus Promatect-Platten in unterschiedlichen Stärken bei einer Brandbeanspruchung von außen nach Einheitstemperaturkurve (ETK) zur Beurteilung des Funktionserhalts nach DIN 4102-12 geprüft.




Bild 7-7 Einheitstemperaturkurve (ETK) zur Beurteilung des Funktionserhalts


7.3.2 Ausführungen

Wesentliche Bestandteile zur Erfüllung des Funktionserhalts sind spezielle Bauteile für den Funktionserhaltkanal sowie die Tragekonstruktion für Kanal und Schienenverteilersysteme BD2, LD, LR und LI. Abhängig von den Umgebungsbedingungen sind verschiedene Ausführungen des Kanals (4- und 3-seitige Schottungen) und der Tragekonstruktion (Befestigung mit Gewindestäben oder Wandausleger) möglich. Hierbei sind die Vorgaben aus bauaufsichtlichen Prüfzeugnissen zu befolgen oder zu erfüllen:


- Einhaltung der max. zulässigen Abstände zwischen den Befestigungen sowie einer max. zulässigen Zugspannung von 6 N / mm²
- Ausschließlich Einsatz von bauamtlich zugelassenem Befestigungszubehör und dem Schottungsmaterial inkl. Schottungszubehör. Dieses Material muss bauseits gestellt werden und ist nicht im Lieferumfang des Schienenverteilers.

Folgende Ausführungsvarianten kommen in Frage:

Funktionserhalt mit 4-seitiger Schottung

Funktionserhalt mit 3-seitiger Schottung¹⁾

7.3 Funktionserhalt

- (1) Schienensystem
- ② Bekleidung Funktionserhaltkanal
- (3) Bekleidung an Querstoßverbindungen (Stoßkanten)
- 4) Lastverteilerplatte
- ⑤ Gewindestange (M12 / M16)
- 6 Ausleger nach Statik
- (7) Trageprofil nach Statik

Sämtliche Details zu Art und Typen der Schottungen, Bauteile sowie zu den Tragekonstruktionen sind in den bauaufsichtlichen Prüfzeugnissen (AbP) genau beschrieben. Vor der Planung sind diese AbP im Produktbereich anzufragen.

Tabelle 7-2 Reduktionsfaktoren Funktionserhalt für die Systeme BD2 und LD

System	Funktions- erhalts-	Stärke d [mm] / Plattentyp	Außenabmes- sungen ^{2) 2a)} des	Reduktionsfa onserhaltklas	•	chend der Funkti- ulage
	klasse 5)	PROMATECT-	Promatkanals	Horizontal		Vertikal
			(B [mm] x H [mm])	Hochkant ⁴⁾	Flach	
BD2A-160 400	E60	40 / L500	288 x 190	0,75	0,7	0,7
	E90	50 / LS	308 x 210	0,7	0,65	0,65
BD2A-630 1000	E90	40 / L500	250 x 300	0,75	0,7	0,7
BD2C-160 400	E30 E90	45 / LS	300 x 200	0,75	0,65	0,65
BD2C-630 1250	E30 E90	45 / LS	300 x 260	0,75	0,65	0,65
Materialprüfungsanstalt	Braunschweig					
LDA1 LDA3 / LDC2,	E30	20 / L500	260 x 260	0,57 (AI)	-	-
LDC3 (IP34)	E60	_		0,58 (Cu)		
	E30	40 / L500	300 x 300	0,5 (AI)	-	-
	E60	_		0,52 (Cu)		
	E90	_				
LDA4 LDA8 /	E30	20 / L500	320 x 260	0,57	-	-
LDC6 LDC8 (IP34)	E60	_				
	E90	_				
Materialprüfungsanstalt	Leipzig					
LDA1 LDA3 / LDC2,	E30	45 / LS	310 x 320	0,5 (AI)	-	0,5 (AI)
LDC3 (IP34)	E60	_		0,52 (CU)		0,48 (CU)
	E90					
LDA4 LDA8 /	E30	45 / LS	370 x 320	0,45	-	0,44 (AI)
LDC6 LDC8	E60	_				0,48 (CU)
(IP34)	E90	_				

¹⁾ 3-schottige Ausführung für Deutschland auf Anfrage.

²⁾ Außenabmessungen gelten für 4-schottige Ausführungen. Abmessungen für 3-schottige Ausführungen auf Anfrage.

^{2a)} System LD: Die Außenabmessungen gelten für 4-schottige Ausführungen ohne äußere Querstoßverbindung (Muffe). Abmessungen für 3- und 2-schottige Ausführungen und für Ausführungen mit Lüftungsklappen erhalten Sie auf Anfrage

³⁾ Die Reduktionsfaktoren beziehen sich auf den Bemessungsstrom und eine Umgebungstemperatur von 35 °C im 24-h-Mittel und bei System LD zusätzlich auf frei belüftete Kanäle. Berücksichtigen Sie bei Temperaturabweichungen zusätzlich die gültigen Reduktionsfaktoren entsprechend.

⁴⁾ Einbaulage horizontal hochkant.

⁵⁾ System LD: Die Funktionserhaltsklasse E120 wurde in Anlehnung an die Prüfnorm DIN 4102-12 geprüft. Gemäß Norm gibt es allerdings nur maximal die Funktionserhaltsklasse E90.

7.3 Funktionserhalt

Tabelle 7-3 Reduktionsfaktoren Funktionserhalt für das System LI

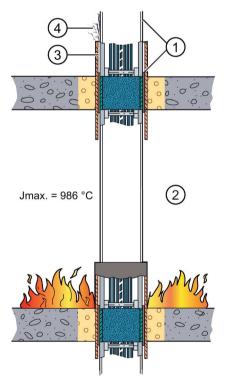
System	Funktionserhalts-	Stärke d [mm]	Abmessungen ²⁾	Reduktionsfakto	r ³⁾ für alle Lagen	
	klasse	Plattentyp	B [mm] x H [mm]	Kanallänge Funktionserhalt		
		PROMATECT		> 3,20	≤ 3,20 m	
LI-A.0800	E15 E90	45 / LS	300 x 240	0,55	0,61	
LI-C.1000	<u></u>			0,57	0,62	
LI-A.1000	E15 E90	45 / LS	300 x 260	0,56	0,62	
LI-C.1250				0,53	0,58	
LI-A.1250	E15 E90	45 / LS	300 x 280	0,53	0,58	
LI-C.1600	<u></u>			0,52	0,57	
LI-A.1600	E15 E90	45 / LS	300 x 310	0,52	0,58	
LI-C.2000	<u></u>			0,52	0,57	
LI-A.2000	E15 E90	45 / LS	300 x 360	0,56	0,61	
LI-C.2500	<u></u>			0,48	0,53	
LI-A.2500	E15 E90	45 / LS	300 x 430	0,55	0,61	
LI-C.3200	<u></u>			0,54	0,59	
LI-A.3200	E15 E90	45 / LS	550 x 310	0,57	0,59	
LI-C.4000				0,50	0,53	
LI-A.4000	E15 E90	45 / LS	550 x 360	0,55	0,58	
LI-C.5000				0,52	0,55	
LI-A.5000	E15 E90	45 / LS	550 x 430	0,54	0,57	
LI-C.6000				0,58	0,61	

^{1) 3-}schottige Ausführung für Deutschland auf Anfrage.

Die Reduktionsfaktoren beziehen sich auf den Bemessungsstrom und eine Umgebungstemperatur von 35 °C im 24-h-Mittel. Berücksichtigen Sie bei Temperaturabweichungen zusätzlich die gültigen Reduktionsfaktoren entsprechend.

BD2 (Schienenkasten) LD, LI (Schienenleiter)

Außenabmessungen gelten für 4-schottige Ausführungen. Einbaulage horizontal hochkant. Abmessungen für 3schottige Ausführungen auf Anfrage.


7.4 Brandschottung

7.4.1 Schienenverteiler mit Brandschottung

Die Landesbauordnungen (oder auch nationale Vorschriften) fordern, dass bauliche Anlagen so beschaffen sein müssen, dass "der Entstehung und der Ausbreitung von Feuer und Rauch vorgebeugt wird und bei einem Brand wirksame Löscharbeiten und die Rettung von Menschen und Tieren möglich sind". So darf weder Feuer noch Rauchgas von einem Geschoss oder Brandabschnitt in einen anderen übertragen werden.

Die Schienensysteme BD01, BD2, LD, LI und LR können mit einer Brandschottung ausgerüstet werden. Brandschottungen unterliegen generell den Gerätenormen IEC / EN 61439-6 und den landespezifischen Bestimmungen, die voneinander abweichen können. Aus diesem Grunde empfehlen wir in der Planungsphase Ihren SIEMENS-Ansprechpartner zu kontaktieren.

Die Systeme erfüllen die Anforderungen zum Nachweis der Feuerwiderstandsdauer gemäß Feuerwiderstandsklasse nach ISO 834-1 entsprechend IEC / EN 61439-6.

- Zulässige Oberflächentemperatur an Bauteilen (auf der dem Feuer abgekehrten Seite) max. 180K über Ausgangstemperatur
- ② Brandraum: Befeuerung gemäß Einheitstemperaturkurve DIN 4102, Blatt 2 bzw. DIN EN 1363-1
- 3 Zulässige Temperaturerhöhung der austretenden Luft max. 140 °C
- 4 Keine zündbaren Gase dürfen austreten. Kein die Rettungsarbeiten behindernder Rauch darf austreten

Bild 7-8 Bedingungen für Schienenverteiler

7.4 Brandschottung

7.4.2 Ausführungen

Die Schienenverteiler werden anders als bei der Kabelinstallation mit einer Brandschottung ab Werk geliefert. Je nach Schienensystem besteht die Brandschottung aus einer inneren und äußeren oder nur aus einer äußeren Brandschottung.

Die Brandschottungen entsprechen den Feuerwiderstandsklassen S60, S90 und S120 nach DIN 4102-9 je nach Ausführung und Typ (EI60, EI90 und EI120 in Vorbereitung).

Der Einbau der Brandschottung am Schienensystem erfolgt im Werk (BD2, LD), kann vor Ort auf der Baustelle erfolgen (BD01, LI, LR) oder kann entfallen (LR). Beachten Sie hierzu den Abschnitt "Besondere Bedingungen für den deutschen Markt".

Wie der Einbau erfolgt, ist abhängig vom Aufbau des Schienensystems und der geforderten Feuerwiderstandsklasse, wie Sie folgender Übersicht entnehmen können (in den Darstellungen werden die Mindestabstände zwischen Brandschottung und Wand sowie der Brandschutzmörtel vernachlässigt):

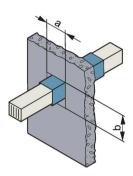
Ohne äußeren Brandschott, mittig in der Wand / Decke		Mit äußeren Brandschott, mittig in der Wand / Decke	Mit äußeren Brandschott an der Wand / Decke
1	Schienensystem		
2	Äußerer Brandschott		
Beis	piele		
BD2	A mit innerem Brandschutz S90 für	BD2A / BD2C: S120	BD01: S90
(Mai	uerstärke ≥ 35 cm)	(Mauerstärke < 35 cm)	(Brandschutzanbau erfolgt beidseitig)
BD2	A mit innerem Brandschutz S120	LR: S90 ¹⁾	
(Mai	uerstärke ≥ 35 cm)	LR: S1201)	
		BD01: S90	
		LD: S120 LI: El90; El120	
Ь			

Brandschutzanbau aus System LR erfolgt vor Ort nach dem Verschließen der Wand / Decke mit Füllmaterial. In der Wand / Decke befindet sich für das System LR in der Regel kein äußerer Brandschutz.

Feuerwiderstandsklassen

System	Feuerwiderstandsklasse				
	S60	S90	S120		
BD01	1	1	-		
BD2A / BD2C	2	2	3		
LDA / LDC	3	3	3		
LI-A / LI-C Einfachsysteme	4	4	4		
LI-A / LI-C Doppelsysteme	4	4	4		
LRA / LRC	5	6	7		

- 1: Vor Ort einbaubares Brandschutzkit für S90 und S60 zum Einbau in Massivbauwand / -decke oder Leichtbauwand.
- 2: Werkseitig am System eingebaute Brandschottung für S90 und S60 zum Einbau in Massivbauwand / -decke.
- Werkseitig am System eingebaute Brandschottung für S120 zum Einbau in Massivbauwand / -decke.
- 4: Vor Ort einbaubares Brandschutzkit für El90 und El120 zum Einbau in Massivbauwand / -decke.
- 5: S60 ohne systemspezifische Brandschottung zum Einbau an Massivbauwand / -decke. Prüfzeugnisse liegen vor.
- 6: Vor Ort anzubringender Schutzanstrich für S90 zum Einbau an Massivbauwand / -decke. Prüfzeugnisse liegen vor.
- 7: Vor Ort anzubringender Schutzanstrich und Brandschutzkit für S120 zum Einbau an Massivbauwand / -decke.


Besondere Bedingungen für den deutschen Markt:

Die hier beschriebenen Ausführungen für Brandschotte sind auf Grundlage von bestandenen Prüfungen nach DIN 4102 Teil 9 bzw. EN 1366-3 entstanden. In Deutschland müssen Brandabschottungen eine Allgemeine bauaufsichtliche Zulassung oder eine europäische technische Zulassung besitzen. Diese werden vom Deutschen Institut für Bautechnik in Berlin ausgestellt. Jegliche Abweichungen von der Zulassung müssen mit dem Produktbereich geklärt werden, um eine evtl. notwendige Zustimmung im Einzelfall bei der zuständigen Landesbaubehörde zu beantragen.

Für den Einbau von Brandschottungen in Leichtbauwänden für die Systeme BD01, BD2, LD und LI wurden Brandschutzprüfungen durchgeführt und bestanden. Weitere Details zu Ausführungen und Zulassungen erfolgen auf Anfrage im Produktbereich.

7.4.3 Durchbrüche

Empfohlene Abmessungen bei Massivwand- oder Massivdeckendurchbrüchen

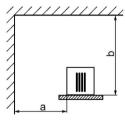
System		a [cm]	b [cm]
BD01		19	13
BD2A(160 400)	BD2C(160 400)	20	9
BD2A(630 1250)	BD2C(630 1250)	20	15
LDA1 LDA3	LDC2 LDC3	40	40
LDA4 LDA8	LDC6 LDC8	45	40
LI-A.0800	LI-C.1000	35	31
LI-A.1000	LI-C.1250	35	33
LI-A.1250	LI-C.1600	35	35
LI-A.1600	LI-C.2000	35	38
LI-A.2000	LI-C.2500	35	43
LI-A.2500	LI-C.3200	35	50
LI-A.3200	LI-C.4000	61	38
LI-A.4000	LI-C.5000	61	43
LI-A.5000	LI-C.6300	61	50
LRA01 LRA03	LRC01 LRC03	19	19
LRA04	LRC04	22	21
LRA05	LRC05	22	23
LRA06	LRC06	22	25
LRA07	LRC07	22	29
LRA08	LRC08	22	33
LRA09	LRC09	22	37
LRA27	LRC27	22	48
LRA28	LRC28	22	56
LRA29	LRC29	22	64

Hinweis

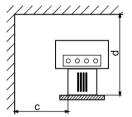
Nach der Montage müssen Sie den Raum zwischen dem Schienensystem bzw. dem Brandschutzblock und dem Wand- bzw. Deckendurchbruch mit nicht brennbarem Baustoff, z. B. Beton oder Mörtel, in Wand- oder Deckendicke ausfüllen. Der Beton oder Mörtel muss den geltenden Vorschriften zur Erhaltung der Feuerwiderstandsklasse der Wand bzw. Decke entsprechen (z. B. EN 206-1 und EN 998-2).

Hinweis

Mindestabstand


Zum Einbau der Schienensysteme SIVACON 8PS mit Brandschutz ist grundsätzlich ein Mindestabstand von 5 cm zwischen System oder Systembrandschutz und Baukörper im Durchbruch einzuhalten. Damit ist ausreichender Platzbedarf für die Strangmontage, die Befestigungsbügel und das Einmörteln in den Baukörper gewährleistet.

7.5 Trassenplanung


7.5.1 Platzbedarf bei horizontaler Installation

Um eine einfache Montage der Schienenkästen und der Abgangskästen zu gewährleisten, sind bei der Planung der Trassenführung Mindestmaße zu den Baukörpern zu beachten

Mindestmaße für Schienenverteiler mit und ohne Abgangskästen inklusive systemkonformem Befestigungsbügel horizontal auf Pritsche oder Wandausleger montiert:

Schienenverteiler ohne Abgangskasten (horizontale Installation)

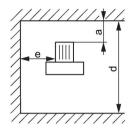
Schienenverteiler mit Abgangskästen (horizontale Installation)

7.5 Trassenplanung

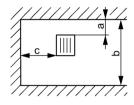
Platzbedarf

System		Abstandsmaß	e ¹⁾		
		a [cm]	b ²⁾ [cm]	c [cm]	d ³⁾ [cm]
BD2A(160 400)	BD2C(160 400)	10	16 (20)	30	62
BD2A(630 1000)	BD2C(630 1250)	10	28 (24)	30	68
LDA1 LDA3	LDC2 LDC3	10	36	35	100
LDA4 LDA8	LDC6 LDC8	10	36	38	100
LI-A.0800		10	21 (26)	38	121
LI-A.1000		10	23 (26)	38	123
LI-A.1250		10	25 (26)	38	125
LI-A.1600		10	28 (26)	38	128
LI-A.2000		10	33 (26)	38	133
LI-A.2500		10	40 (26)	38	140
LI-A.3200		10	28 (51)	38	128
LI-A.4000		10	33 (51)	38	133
LI-A.5000		10	40 (51)	38	140
LI-C.1000		10	21 (26)	38	121
LI-C.1250		10	22 (26)	38	122
LI-C.1600		10	25 (26)	38	125
LI-C.2000		10	27 (26)	38	127
LI-C.2500		10	31 (26)	38	131
LI-C.3200		10	38 (26)	38	138
LI-C.4000		10	27 (51)	38	127
LI-C.5000		10	31 (51)	38	131
LI-C.6300		10	38 (51)	38	138
LRA01 LRA03	LRC01 LRC03	10	59 (62)	4)	4)
LRC04		10	62 (62)	4)	4)
LRA05 LRA06	LRC05 LRC06	10	65 (62)	4)	4)
LRA07	LRC07	10	69 (62)	4)	4)
LRA08	LRC08	10	72 (62)	4)	4)
LRA09	LRC09	10	74 (62)	4)	4)
LRA27	LRC27	10	88 (62)	4)	4)
LRA28	LRC28	10	94 (62)	4)	4)
LRA29	LRC29	10	98 (62)	4)	4)

Abstandsmaße gelten für Einbaulage horizontal hochkant der Schienenleiter ohne Berücksichtigung der Gehäuseabmessungen von Kabeleinspeisekästen.


²⁾ Maßangaben in Klammern gelten für Einbaulage horizontal flach der Schienenleiter ohne Berücksichtigung der Gehäuseabmessungen von Kabeleinspeisekästen.

³⁾ Abstandsmaße hängen von den Abmessungen der Abgangskästen ab. Für Einbaulage horizontal flach der Schienenkästen und Abgangskästen hängend Angaben auf Anfrage.


⁴⁾ Abstandsmaße hängen von den Abmessungen der Abzweigkästen ab. Angaben auf Anfrage.

7.5.2 Platzbedarf bei vertikaler Installation

Angegeben sind die Mindestmaße für Schienenverteiler mit und ohne Abgangskästen. Die in der Darstellung fehlenden systembezogenen Befestigungsbügel sind in den Maßangaben berücksichtigt.

Schienenverteiler mit Abgangskasten (vertikale Installation)

Schienenverteiler ohne Abgangskasten (vertikale Installation)

Platzbedarf

System		Abstandsmaße ¹⁾				
		a [cm]	b ²⁾ [cm]	c [cm]	d ⁴⁾ [cm]	e [cm]
BD2A (160 400)	BD2C (160 400)	5 ²⁾ (3) ³⁾	19	10	116	30
BD2A (630 1250)	BD2C (630 1250)	5 ²⁾ (3) ³⁾	31	10	120	30
LDA1 LDA3	LDC2 LDC3	102) (2)3)	46	10	146	35
LDA4 LDA8	LDC6 LDC8	102) (2)3)	46	10	146	38
LI-A.0800		102) (6)3)	21	15	131	38
LI-A.1000		102) (6)3)	23	15	133	38
LI-A.1250		102) (6)3)	25	15	135	38
LI-A.1600		102) (6)3)	28	15	138	38
LI-A.2000		102) (6)3)	33	15	143	38
LI-A.2500		102) (6)3)	40	15	150	38
LI-A.3200		102) (6)3)	28	15	138	38
LI-A.4000		102) (6)3)	33	15	143	38
LI-A.5000		102) (6)3)	40	15	150	38
LI-C.1000		102) (6)3)	21	15	131	38
LI-C.1250		102) (6)3)	22	15	132	38
LI-C.1600		102) (6)3)	25	15	135	38
LI-C.2000		102) (6)3)	27	15	137	38
LI-C.2500		102) (6)3)	31	15	141	38
LI-C.3200		102) (6)3)	38	15	148	38
LI-C.4000		102) (6)3)	27	15	137	38
LI-C.5000		102) (6)3)	31	15	141	38
LI-C.6300		102) (6)3)	38	15	148	38
LRA01 LRA03	LRC01 LRC03	102)	69	10	5)	5)

7.5 Trassenplanung

System		Abstandsmaße ¹⁾				
		a [cm]	b ²⁾ [cm]	c [cm]	d ⁴⁾ [cm]	e [cm]
LRC04		102)	72	10	5)	5)
LRA05 LRA06	LRC05 LRC06	102)	75	10	5)	5)
LRC07		102)	79	10	5)	5)
LRC08		102)	82	10	5)	5)
LRC09		102)	84	10	5)	5)
LRC27		10 ²⁾	98	10	5)	5)
LRC28		10 ²⁾	104	10	5)	5)
LRC29		102)	108	10	5)	5)

Die Gehäuseabmessungen von Kabeleinspeisekästen sind nicht berücksichtigt.

²⁾ Abstandsmaße gelten als Mindestmaße bei Berücksichtung der empfohlenen Durchbruchsangaben für Brandschottung in der Decke und bündigem Abschluss des Durchbruchs mit der Wand.

Die reduzierten Maßangaben in Klammern gelten für Schienenkästen ohne Brandschottung und beziehen sich auf die Vorgaben von den vertikalen Befestigungsbügeln. Bei baubedingten Abweichungen ist der Einsatz von bauseitigem Füllmaterial erforderlich.

⁴⁾ Die Abstandsmaße hängen von den Abmessungen der Abgangskästen ab. Die Angaben gelten für die verfügbaren Abgangskästen max. Größe. Für den Einsatz kleiner Baugrößen erhalten Sie die Angaben auf Anfrage.

⁵⁾ Die Abstandsmaße hängen von den Abmessungen der Abzweigkästen ab. Angaben auf Anfrage.

7.5.3 Befestigungsbügel für vertikale Befestigung

Für die Befestigung der Schienenkästen sind systemspezifische Befestigungsbügel einzusetzen.

System	Bügelart (Typ)	Funktion	Befestigungsabstände ²⁾
BD2A / BD2C ¹⁾	Befestigungsbügel mit Tragkraft (-BVW)	 Stützen des Stranggewichts Für Wandbefestigung Für Deckenbefestigung (-BDV) 	7,5 m: bis 400 A 5 m: 630 A 4 m: 800 A 1000 A 3,25 m: 1250 A
	Befestigungsbügel mit Tragkraft (-BVF)	Stützen des Stranggewichts Für Wandbefestigung	An jedem Verbindungs- flansch des Klemmblocks (max. 3,25 m)
	Distanzbügel (-BD) zur Strangführung und Distanz- ausgleich Distanzstück (-DSB)	Abstand zum Baukörper fixieren Für Wandbefestigung	Abhängig von Gegebenheiten vor Ort und Projektierung
LDA / LDC ¹⁾	Befestigungsbügel mit Tragkraft (-BV)	 Stützen des Stranggewichts Für Wandbefestigung 	An jedem Schienenkasten (max. 3,20 m)

7.5 Trassenplanung

System	Bügelart (Typ)	Funktion	Befestigungsabstände ²⁾
LI-A / LI-C	Befestigungsbügel mit Tragkraft	 Stützen des Stranggewichts Eigenbewegung zulassen Für Wandbefestigung Für Deckenbefestigung 	Bei einer durchschnittlichen Stockwerkshöhe von 3,40 m bis 3,90 m je Stockwerk 1 Satz Bügel
	Fixpunktbügel	 Fixieren des Strangs an Baukörper Für Wandbefestigung 	Abhängig von Gegebenheiten vor Ort und Projektierung
LRA / LRC	Befestigungsbügel mit Tragkraft (-BVW)	 Stützen des Stranggewichts Eigenbewegung zulassen Für Wandbefestigung Für Deckenbefestigung (-BVD) 	Bei einer durchschnittlichen Stockwerkshöhe von 3,40 m bis 3,90 m je Stockwerk 1 Satz Bügel
	Fixpunktbügel (-BF)	 Fixieren des Strangs an Baukörper Für Wandbefestigung Für Deckenbefestigung (-BFD) 	Abhängig von Gegebenheiten vor Ort und Projektierung

System	Bügelart (Typ)	Funktion	Befestigungsabstände ²⁾
	Gleitbügel (-BGW)	 Abstand zum Baukörper fixieren Eigenbewegung zulassen Für Wandbefestigung 	Abhängig von Gegebenheiten vor Ort und Projektierung

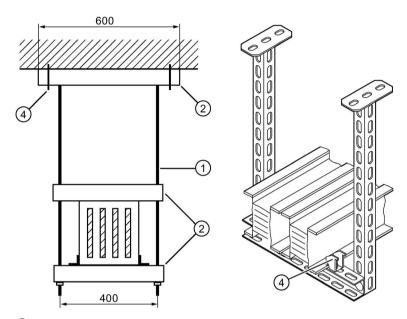
- 1) Fixpunktbügel sind aufgrund der Bauart des Systems nicht erforderlich.
- ²⁾ Die Angaben sind Empfehlungen für die Planung. Max. zulässige Befestigungsabstände sind aus den Projektierungsrichtlinien zu entnehmen.

7.5.4 Befestigungsbügel für horizontale Befestigung

System	Bügelart (Typ)	Funktion	Befestigungsabstände 2)
BD2A / BD2C ¹⁾	Befestigungsbügel (-BB)	 Stützen oder Tragen des Stranggewichts Für Wandbefestigung für Befestigung an der Decke über Hängestiele für Befestigung an der Wand über Distanzstück für Befestigung an Wand und Rohrausleger 	3,25 m: bis 630 A (1 x Befestigung je Schienenkasten) 2,5 m: bis 1000 A Für BD2C sowie Abhängung über Distanzbügel siehe Technische Daten (Seite 62)
LDA / LDC ¹⁾	Aufhängebügel (-B.)	 Tragen des Stranggewichts Für Befestigung an Hängestielen 	1 x Befestigung je Schie- nenkasten bei LDA bis 4000 A sowie LDC bis 4400 A (IP34) 2 m für 5000 A (IP34)
	Klemmbügel (bauseits)	für Befestigung an Wand und Rohrausleger	Wie Aufhängebügel
LI-A / LI-C	Befestigungsbügel mit Tragkraft (-BH und - BK)	 Stützen des Strangsgewichts Eigenbewegung zulassen Für Befestigung an Decken über Gewindestangen Befestigung and der Wand über Wand und Rohrausleger 	2 m für Aufbaulage flach 3 m für Aufbaulage hoch- kant

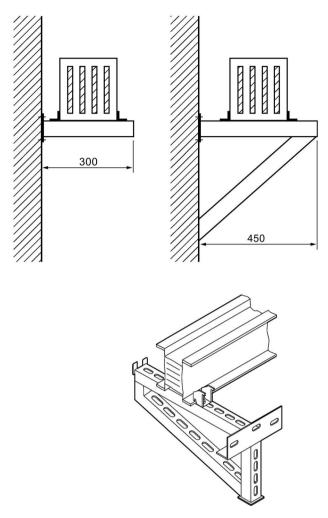
System	Bügelart (Typ)	Funktion	Befestigungsabstände 2)
	Fixpunktbügel (-BVF)	 Fixieren des Strangs an Baukörper Für Wand- und De- ckenbefestigung Für Befestigung (-K) auf Festpunktkonsolen 	Abhängig von Gegebenheiten vor Ort und Projektierung
LRA / LRC	Befestigungsbügel mit Tragkraft (-BVW)	 Stützen des Strangsgewichts Eigenbewegung zulassen Für Wandbefestigung Für Deckenbefestigung (-BVD) 	1,5 m
	Fixpunktbügel	Fixieren des Strangs an BaukörperFür WandbefestigungFür Deckenbefestigung	Abhängig von Gegebenheiten vor Ort und Projektierung

¹⁾ Fixpunktbügel sind aufgrund der Bauart des Systems nicht erforderlich.


²⁾ Die Angaben sind Empfehlungen für die Planung. Die maximal zulässigen Befestigungsabstände entnehmen Sie den technischen Datentabellen.

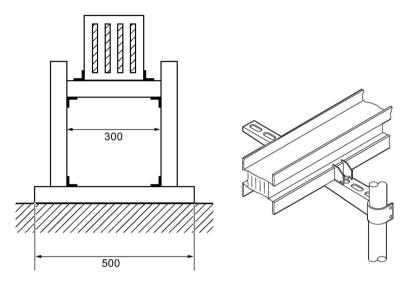
7.5.5 Tragekonstruktionen

Befestigungsarten


Aufgrund der unterschiedlichen baulichen Gegebenheiten vor Ort existieren viele verschiedene technische Möglichkeiten von Tragekonstruktionen. Die gängigsten Varianten finden Sie in der folgenden Übersicht:

Decke: abgehängte Installation

- ① Gewindestangen oder C-Profile
- ② C-Profile oder Kopfplatten
- 3 Dübel
- 4 Klemmbügel


Wand: aufliegende Installation

Verschiedene Wandausleger je nach statischer Anforderung

7.5 Trassenplanung

Boden: aufgeständerte Installation

Ständerkonstruktionen bestehen meist aus C-Profilen mit Verbindungsmaterial oder Rohrprofil mit entsprechenden Auslagen.

Weitere Details zur Befestigung der Systeme entnehmen Sie den jeweiligen Projektierungsund Installationshandbüchern.

7.6 Magnetische Felder

Allgemeines

Die für Energieverteilung und Energietransport vorgesehenen Stromschienen erzeugen, physikalisch bedingt, in ihrer Umgebung elektromagnetische Wechselfelder mit der Grundfrequenz 50 Hz. Diese Magnetfelder können die störungsfreie Funktion von empfindlichen Gerätschaften, wie Computern oder Messwerkzeugen, negativ beeinflussen.

Grenzwerte

In den EMV-Richtlinien bzw. den daraus resultierenden Normen sind keine Vorschriften oder Empfehlungen für die Planung von Schienenverteileranlagen enthalten. Wenn Schienenverteiler in Krankenhäusern eingesetzt werden, kann die DIN VDE 0100-710 zurate gezogen werden.

In der DIN VDE 0100-710 werden Grenzwerte von netzfrequenten Magnetfeldern in Krankenhäusern festgelegt. So darf an dem Patientenplatz die magnetische Induktion bei 50 Hz folgende Werte nicht überschreiten:

B= 2 x 10⁻⁷ Tesla für EEG

B= 4 x 10-7 Tesla für EKG

Der Grenzwert für induktive Störungen zwischen mehradrigen Kabeln und Leitungen der Starkstromanlage, Leiterquerschnitt > 185 mm², und den zu schützenden Patientenplätzen wird sicher unterschritten, wenn der laut DIN VDE 0100-710 empfohlene Mindestabstand von 9 m eingehalten wird.

Bei dem Einsatz von Stromschienen kann dieser Abstand in der Regel geringer ausfallen, da die bauartbedingten Eigenschaften der Schienensysteme wirkungsvoll die magnetischen Störfelder für die Umgebung reduzieren.

Magnetfeldmessungen

Um dennoch in der Planungsphase die Beurteilung der einzusetzenden Stromschienen zu ermöglichen, wurden umfangreiche Magnetfeldmessungen gemäß EN 61439-6 durchgeführt. Die Aufnahme der magnetischen Störstrahlung der Stromschienensysteme erfolgte an einer 9,0 m langen geraden Schienenanordnung. Die Stromschienen wurden symmetrisch mit Bemessungsstrom belastet und die Magnetfelder in acht Richtungen im 0,1 m-Raster bis zu 1 m Abstand gemessen.

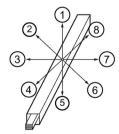


Bild 7-9 Koordinatensystem der Magnetfeldmessung

7.6 Magnetische Felder

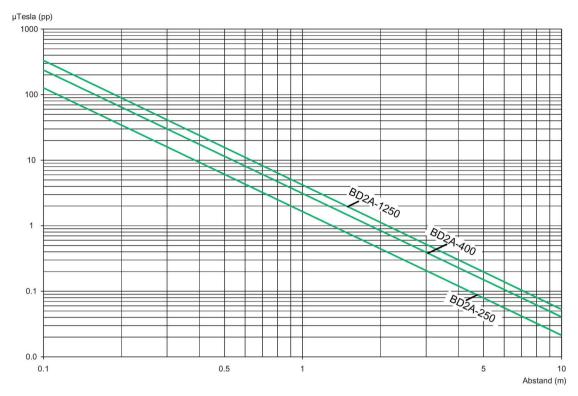


Bild 7-10 BD2 Magnetfelder für Systeme Al 250 A, 400 A, Cu 1250 A

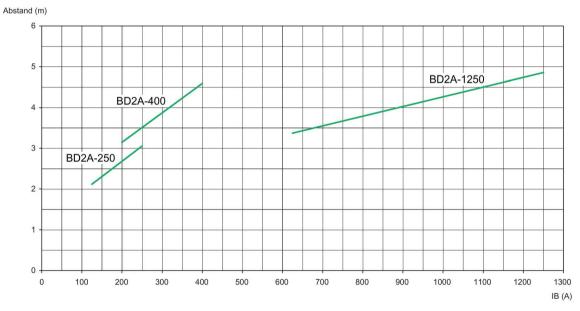


Bild 7-11 BD2 Last-Abstandsprofil für 0,2 μT der Systeme Al 250 A, 400 A, Cu 1250 A

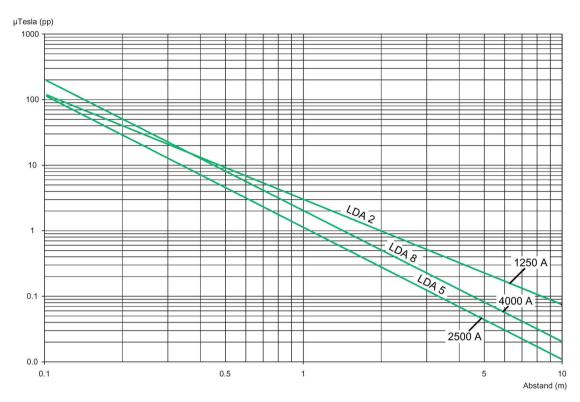


Bild 7-12 LDA Magnetfelder für Systeme Al 1250 A, 2500 A und 4000 A

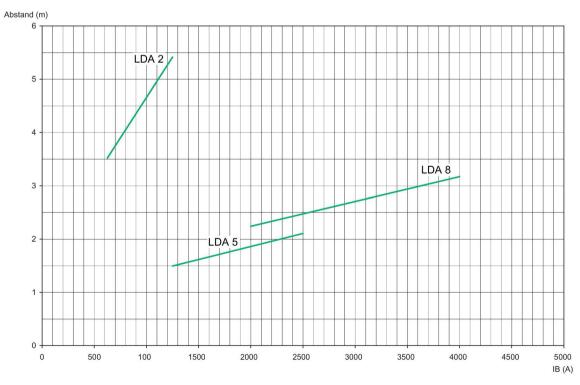


Bild 7-13 LDA Last-Abstandsprofil für 0,2 μT der Systeme 1250 A, 2500 A und 4000 A

7.6 Magnetische Felder

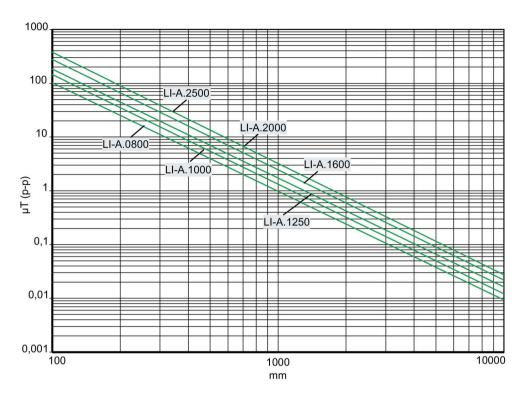


Bild 7-14 Störfeld LI-A0800 bis LI-A2500

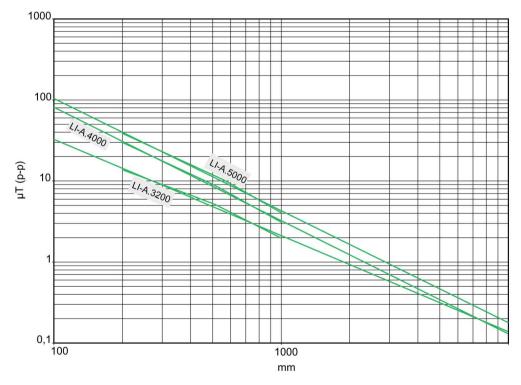


Bild 7-15 Störfeld LI-A3200 bis LI-A5000

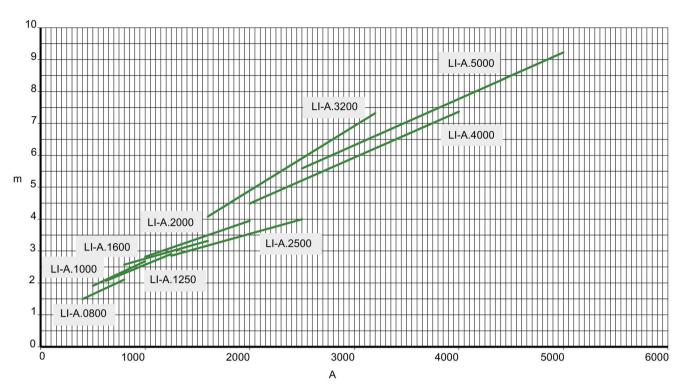


Bild 7-16 LI-A Last-Abstandsprofil für 0,2 μT - Übersichtsdiagramm

Diagramme weiterer Baugrößen und für das System LR erhalten Sie auf Anfrage.

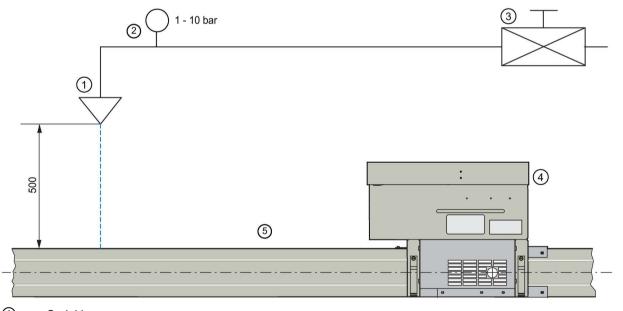
7.7 Sprinklerprüfung

Allgemeines

Zum Schutz vor Bränden werden im Gebäude- und Industriebereich Sprinkleranlagen eingesetzt. Sprinkleranlagen sind selbsttätige Feuerlöschanlagen. Ihre Funktion besteht darin, durch Früherkennung ausbrechendes Feuer zu melden und schnellstmöglich zu löschen. Während des Löschvorgangs ist von einer Beregnung von mindestens 30 Minuten auszugehen.

Die Schienenverteiler-Systeme BD2, LD und LI wurden einer Sprinklerprüfung unterzogen. In Ermangelung einer verbindlichen Norm erfolgten die Prüfungen auf Basis eines praxisgerechten Prüfaufbaus (siehe Skizze).

Prüfergebnisse


BD2 und LI

Bei den Schienenverteiler-Systemen BD2 und LI wurde in Schutzart IP54 in allen Aufbauanlagen die Wasserbeaufschlagung in Anlehnung an die Richtlinien des VdS für Sprinkleranlagen vorgenommen. Vor und nach der 90-minütigen Beregnung wurden die Isolationswiderstände gemessen und eine Hochspannungsprüfung gemäß IEC / EN 61439-6 durchgeführt. Diese Prüfung wurde erfolgreich bestanden und belegt, dass das Schienensystem sofort nach der Beregnung ohne Verzögerung in Betrieb genommen werden kann.

LD

Das Schienensystem LD mit der Schutzart IP34 und den dazugehörenden Abgangskästen in Schutzart IP54 wurde in horizontaler sowie in vertikaler Schienenführung mit Schirmsprinkler 3/4" und Flachschirmsprinkler 1/2" mit einem Wasserdruck von 6 bar beregnet. Um das elektrische Betriebsverhalten während der Prüfung beurteilen zu können, wurden während der Prüfung die Isolationswiderstände gemessen. Dabei kam es zu keinem Funktionsausfall.

Mit dem Schienensystem LD kann auch bei einer extremen Wasserbeanspruchung, wie es die Beregnung darstellt, der Betrieb ohne Störung aufrecht erhalten werden. Dieses sichere Betriebsverhalten wird zum einen durch große Luft- und Kriechstrecken und zum anderen durch die Möglichkeit, dass das eintretende Wasser ungehindert wieder ablaufen kann, ermöglicht.

- Sprinkler
- 2 Manometer
- 3 Absperrventil
- 4 Abgangskasten
- Schienenkasten

Bild 7-17 Skizze Sprinklerprüfung

7.8 Tools und Dienstleistungen

7.8.1 Engineering Tools - SIMARIS design

SIMARIS design

Softwaretool zur schnellen, effektiven Netzberechnung und Dimensionierung der elektrischen Energieverteilung für Zweck- und Industriebauten von der Mittelspannungsebene bis zum Verbraucher:

- Dimensionierung elektrischer Netze auf der Basis realer Produkte nach anerkannten Regeln der Technik und gültigen Normen (VDE, IEC)
- Automatische Auswahl der passenden Komponenten aus der hinterlegten Produktdatenbank
- Möglichkeit zur Hinterlegung häufig benötigter Module in der Favoritenbibliothek
- Hohe Planungssicherheit bei gleichzeitiger Flexibilität im Planungs- und Realisierungsprozess
- Möglichkeit zur automatischen Selektivitätsbeurteilung mit der professional-Version: zusätzlich zur Strom-Zeit-Kennlinie und den jeweiligen Hüllkurven werden automatisch Selektivitätsgrenzen angezeigt

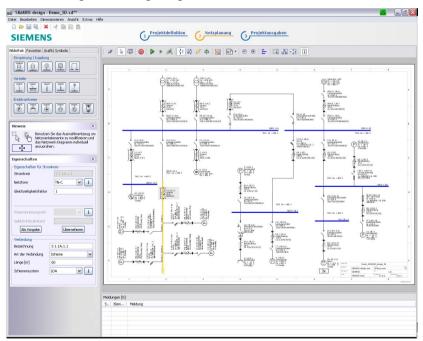


Bild 7-18 SIMARIS design

7.8.2 Engineering Tools - SIMARIS project

SIMARIS project

Softwaretool zur schnellen Ermittlung des erforderlichen Raumbedarfs und des Budgets der elektrischen Energieverteilung für Zweck- und Industriebauten sowie zur Erstellung von Leistungsverzeichnissen:

- Automatische Auswahl und Platzierung der passenden Systeme anhand der eingegebenen Parameter
- Schnelle Übersicht über Raumbedarf und Budget
- Durchgängige Planung von der Mittelspannung bis zum Installationsverteiler
- Leichte Anpassung der Projektplanung bei Konkretisierung möglich, aber auch bei Nutzungsänderungen oder Erweiterungen
- Hinterlegung geplanter Anlagen in der Favoritenbibliothek zur weiteren Verwendung in ähnlichen Projekten
- Automatische Generierung von Leistungsverzeichnissen für die geplanten Anlagen

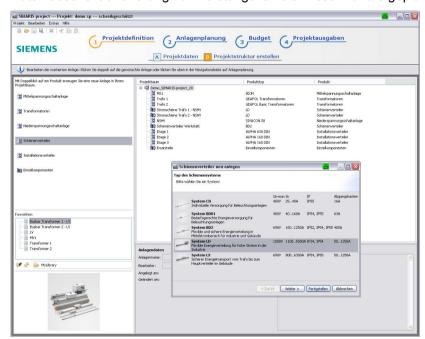


Bild 7-19 SIMARIS project

7.8.3 Engineering Tools - SIMARIS curves

SIMARIS curves

Softwaretool zur Visualisierung und Bewertung von Kennlinien von Niederspannungs-Schutzgeräten und Sicherungen (IEC) inklusive der Möglichkeit zur Simulation von Geräteeinstellungen:

- Visualisierung von Auslösekennlinien, Durchlass-Stromkennlinien und Durchlass-Energiekennlinien
- Geräteauswahl per Bestellnummer oder durch Eingabe bekannter technischer Daten über die Auswahlhilfe
- Hinterlegung häufig benötigter Geräte als Favoriten
- Abspeichern mehrerer Kennlinien einschließlich gewählter Einstellungen als Gesamtprojekt

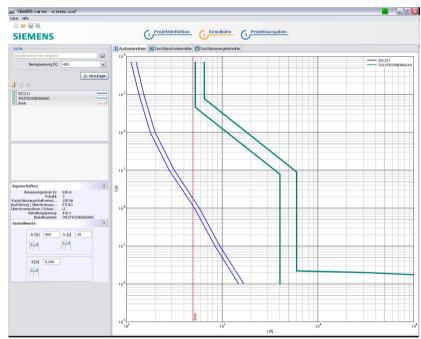
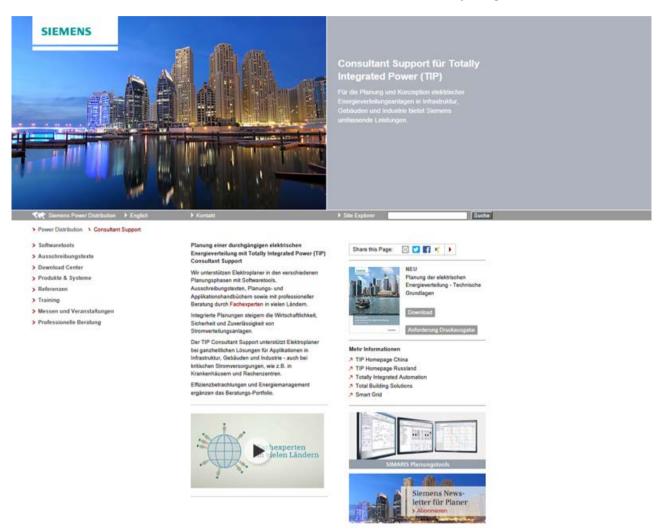



Bild 7-20 SIMARIS curves

7.8.4 Engineering Tools - Weitere Informationen zu SIMARIS

Weitere Informationen zur elektrischen Energieverteilung

Weitere Informationen finden Sie im Internet unter: Totally Integrated Power

Bild 7-21 Einstiegsseite "Consultant Support für Totally Integrated Power (TIP)

Die Schienenverteiler-Systeme SIVACON 8PS sind Teil des umfassenden Produktportfolios von Totally Integrated Power, der Siemens-Lösung für die durchgängige elektrische Energieverteilung in industriellen Anwendungen, Infrastruktur und Gebäuden. Mit technischen Handbüchern und Softwaretools zur Planung der Energieverteilung sowie Online-Ausschreibungstexten unterstützen wir Sie bei den verschiedenen Phasen der Planung.

Sie finden alle diese Dokumente und Informationen auf unserer Homepage (http://www.siemens.de/tip-cs).

Glossar

Angabe von Bemessungswerten

Entsprechend der DIN EN 61439-1 werden von den Herstellern von Niederspannungs-Schaltgerätekombinationen Bemessungswerte angegeben. Diese Bemessungswerte gelten für vorgegebene Betriebsbedingungen und charakterisieren die Verwendbarkeit einer Schaltgerätekombination. Für die Koordination der Betriebsmittel oder die Projektierung der Schaltgerätekombination legen Sie die Bemessungswerte zu Grunde.

Bedingter Bemessungskurzschluss-Strom (Icc) DIN EN 61439-1; 5.3.5, IEC / EN 61439-1

Der bedingte Bemessungskurzschluss-Strom entspricht dem unbeeinflussten Kurzschluss-Strom, den ein Stromkreis einer Schaltgerätekombination, geschützt durch eine Kurzschluss-Schutzeinrichtung, ohne Schaden (für eine bestimmte Zeit) führen kann. Der bedingte Bemessungskurzschluss-Strom wird daher für Abgänge und / oder Einspeisungen mit z. B. Leistungsschaltern angegeben.

Bemessungsbetätigungsspannung (Uc) DIN EN 60947-1; 4.5.1

Spannung, die am Betätigungsschließer in einem Steuerstromkreis anliegt. Sie kann durch Transformatoren oder Widerstände im Schaltstromkreis von der Bemessungssteuerspeisespannung abweichen.

Bemessungs-Betriebskurzschlussausschaltvermögen (Ics) DIN EN 60947-2; 4.3.5.2.2

Von der Bemessungsbetriebsspannung abhängiger Kurzschluss-Strom, den ein Leistungsschalter wiederholt unterbrechen kann (Prüfung O - CO - CO, früher P - 2). Nach der Kurzschlussausschaltung ist der Leistungsschalter in der Lage, den Bemessungsstrom bei erhöhter Eigenerwärmung weiter zu führen und bei Überlast auszulösen.

→ Bemessungsdauerstrom; Bemessungsbetriebsspannung

Bemessungsbetriebsleistung DIN EN 60947-1; 4.3.2.3

Leistung, die ein Schaltgerät bei der zugeordneten Bemessungsbetriebsspannung entsprechend der Gebrauchskategorie schalten kann, z. B. Leistungsschütz Gebrauchskategorie AC-3: 37 kW bei 400 V.

Bemessungsbetriebsspannung (Ue) DIN EN 60947-1; 4.3.1.1

Spannung, auf die sich die Kennwerte eines Schaltgeräts beziehen. Die höchste Bemessungsbetriebsspannung darf auf keinen Fall höher als die Bemessungsisolationsspannung sein.

→ Bemessungsisolationsspannung

Bemessungsbetriebsstrom (le) DIN EN 60947-1; 4.3.2.3

Strom, den ein Schaltgerät unter Berücksichtigung von Bemessungsbetriebsspannung, Betriebsdauer, Gebrauchskategorie und Umgebungstemperatur führen kann.

→ Bemessungsbetriebsspannung

Bemessungsdauerstrom (lu) DIN EN 60947-1; 4.3.2.4

Strom, den ein Schaltgerät im Dauerbetrieb (für Wochen, Monate oder Jahre) führen kann.

Bemessungseinschaltvermögen DIN EN 60947-1; 4.3.5.2

Strom, den ein Schaltgerät entsprechend der Gebrauchskategorie bei der jeweiligen Bemessungsbetriebsspannung einschalten kann.

→ Bemessungsbetriebsspannung

Bemessungsfrequenz DIN EN 60947-1; 4.3.3

Frequenz, für die ein Schaltgerät ausgelegt ist und auf die sich die übrigen Kenndaten beziehen.

→ Bemessungsbetriebsspannung; Bemessungsdauerstrom

Bemessungs-Grenzkurzschlussausschaltvermögen (Icu) DIN EN 60947-2; 4.3.5.2.1

Maximaler Kurzschluss-Strom, den ein Leistungsschalter unterbrechen kann (Prüfung O - CO, früher P-1). Nach der Kurzschlussausschaltung ist der Leistungsschalter in der Lage, bei Überlast, mit erhöhten Toleranzen, auszulösen.

Bemessungsisolationsspannung (Ui) DIN EN 60947-1; 4.3.1.2

Spannung, auf die sich Isolationsprüfungen und Kriechstrecken beziehen. Die höchste Bemessungsbetriebsspannung darf auf keinen Fall größer als die Bemessungsisolationsspannung sein.

→ Bemessungsbetriebsspannung

Bemessungskurzschlussausschaltvermögen (Icn) DIN EN 60947-1; 4.3.6.3

Höchster Strom, den ein Schaltgerät bei Bemessungsbetriebsspannung und -frequenz ohne Beschädigung ausschalten kann. Die Angabe erfolgt als Effektivwert.

→ Bemessungsbetriebsspannung

Bemessungskurzschlusseinschaltvermögen (Icm) DIN EN 60947-1; 4.3.6.2

Höchster Strom, den ein Schaltgerät bei einer bestimmten Bemessungsbetriebsspannung und -frequenz ohne Beschädigung einschalten kann. Die Angabe erfolgt abweichend zu den anderen Kenndaten als Scheitelwert.

→ Bemessungsbetriebsspannung

Bemessungskurzschluss-Strom, bedingter (Icc) DIN EN 60947-1; 2.5.29

→ Bedingter Bemessungskurzschluss-Strom (/cc)

Bemessungskurzzeitstromfestigkeit (Icw) DIN EN 61439-1; 5.3.4, IEC / EN 61439-1

Die Bemessungskurzzeitstromfestigkeit charakterisiert, als Effektivwert des Kurzschlussstromes, die thermische Festigkeit eines Stromkreises einer Schaltgerätekombination bei einer kurzzeitigen Belastung. Die Bemessungskurzzeitstromfestigkeit wird normalerweise für die Dauer von 1 s ermittelt; abweichende Zeitwerte sind anzugeben. Die Angabe der Bemessungskurzzeitstromfestigkeit erfolgt für die Verteil- und / oder Hauptsammelschienen einer Schaltgerätekombination.

Bemessungsstoßspannungsfestigkeit (Uimp) DIN EN 60947-1; 4.3.1.3

Maß für die Festigkeit der Luftstrecken im Inneren eines Schaltgerätes gegenüber Stoßüberspannungen. Durch den Einsatz geeigneter Schaltgeräte kann sichergestellt werden, dass abgeschaltete Anlagenteile keine Überspannungen aus dem Netz, in dem sie eingesetzt sind, übertragen werden können.

Bemessungsstoßstromfestigkeit (lpk) DIN EN 61439-1; 5.3.3, IEC / EN 61439-1

Die Bemessungsstoßstromfestigkeit charakterisiert, als Scheitelwert des Stoßstroms, die dynamische Festigkeit eines Stromkreises einer Schaltgerätekombination. Die Angabe der Bemessungsstoßstromfestigkeit erfolgt in der Regel für die Verteil- und / oder Hauptsammelschienen einer Schaltgerätekombination.

Bemessungsstrom (In) eines Leistungsschalters DIN EN 60947-2; 4.3.2.3

Strom, der für Leistungsschalter gleich dem Bemessungsdauerstrom und dem konventionellen thermischen Strom ist.

→ Bemessungsdauerstrom

Bemessungsstrom (In) eines Stromkreises einer Schaltgerätekombination DIN EN 61439-1; 5.3.2

Der Bemessungsstrom eines Stromkreises einer Schaltgerätekombination, der vom Hersteller angegeben wird, hängt von den Bemessungswerten der einzelnen elektrischen Betriebsmittel im Stromkreis innerhalb der Schaltgerätekombination, von ihrer Anordnung und der Art ihrer Verwendung ab. Der Stromkreis muss den Bemessungsstrom führen können, ohne dass bei Prüfung nach 10.10.2 die Übertemperaturen an den einzelnen Bauteilen die Grenzwerte überschreiten, die in 9.2 (Tabelle 6) festgelegt sind.

Index

4	В
4-Leitersystem	Bauartgeprüfte Anbindung an Verteiler und
Technische Daten, 253, 259	Transformatoren, 13
	Bauartgeprüfte Anlage, 24
	Bauartprüfung, 237
5	Baugrößen, 15, 40, 110, 240
5 Loitorsystom	Bedingte Kurzschlussfestigkeit, 29
5-Leitersystem Tachnische Daton 256 258 262	Bedingter Bemessungskurzschluss-Strom, 211
Technische Daten, 256, 258, 262	Befestigung an Wand, 251
	Befestigung des Systems BD01, 17
Α	Befestigungsabstände, 208
^	Befestigungsabstände,
Abgangskasten, 27	maximal, 29, 65, 68, 131, 135, 138, 141, 162, 238
Abgangskästen, 50, 122, 160	Befestigungsbügel, 60, 102, 127, 227, 289, 291
Abgangskasten mit Leistungsschalter, 193	Für horizontale Befestigung, 296
Abgangskästen mit Sicherungslasttrennschalter, 191	Für horizontale Installation, 251
Abgangskasten mit Sicherungsunterteil, 190	Für vertikale Befestigung, 293
Abgangskasten System BD01, 16	Für vertikale Installation, 251
Abgangsstelle, 15, 23, 74, 114	Befestigungselemente, 22
Abmessungen, 30, 128	Belastungsfaktor, 278
Abzweigkästen, 249	Belastungsverteilungsfaktor, 267
Aluminiumgehäuse, 22	Bemessungsbetriebsströme, 27
Anbindung von Verteilern, 117, 244	Bemessungskurzschluss-Strom
Anlagendimensionierung, 27	Bedingter, 211
Anschlussfahnen, 248	Bemessungsstrom, 28, 29
Anschlussquerschnitt, 118, 146, 148	Bemessungsstrom ermitteln, 279
Für Abgangskästen, 72	Berechnung Spannungsfall, 27
Anschlussquerschnitte	Berührungsschutz, 273
Für Einspeisekästen und Einspeisungen, 70, 143	Betrachtung der Schienenführung, 27
Anschlussquerschnitte für blanke Kupferschienen, 209	Betrieb, 18
Anschluss-Stücke für Transformatoren und	Betriebserde, 277
Verteiler, 119, 182, 246	Bewegliche Schienenkästen flexibel, 44
Anschluss-System, 148	Boden
Anschlusswerte, 26 Anzahl der Leiter, 37	Aufgeständerte Installation, 300
•	Bolzenanschluss, 120, 144, 148, 185, 211 Propular 24, 27, 65, 69, 121, 125, 129, 141, 162, 207
Aufhängebügel, 296	Brandlast, 24, 37, 65, 68, 131, 135, 138, 141, 162, 207 237, 253, 256, 259, 262
Aufsetzhilfe, 194 Auslösecharakteristik, 271	237, 233, 236, 239, 202 Brandmeldeanlage, 280
Auslösekennlinie, 309	Brandprüfung, 280
Ausschreibungstexte, 27	Brandschottung, 19, 24, 27, 236, 285, 286, 292
Ausschreibungstexte, 27 Ausschreibungstexte BD2, 36	Brandschottung, 19, 24, 27, 230, 263, 260, 292 Brandschutz, 17, 100, 161, 161, 237, 280, 286
Ausschreibungstexte LDA / LDC, 106	Brandschutzmasse, 17
Ausschreibungstexte LRA / LRC, 236	Budget ermitteln, 308
Außenanwendungen, 14	Bussystem, 12
Auswahl der Systeme, 29	Duodyotom, 12
, 130.13.1. 301 Oj0101110, 20	

C Eisbildung, 62, 197 Elektrische Verbindung, 250 CEE-Steckdosen, 92 Elektromagnetische Beeinflussung, 24, 301 Clean Earth, 31 Endeinspeisekasten, 45 Endeinspeisung, 84 Endflansch, 127 D Endkappe, 195, 234 Dauerstromwert, maximal, 209 Energieabgriff, 122, 249 Decke Energiekonzept, 20 Energietransport, 21, 22 Abgehängte Installation, 298 Deckenbefestigung, 61, 293 Energieversorgung Deckendurchbruch, 288, 292 Planungskonzept, 20 Dehnungsausgleich, 113, 236 Energieverteiler, 278 Dehnungsausgleichskasten, 113 Energieverteilersystem, 22 Demontage, 23 Energieverteilung, 21, 23 Derating, 31, 37, 108, 146, 241 Energieverteilungskonzept, 19 Dimensionieren, 14, 267 Entwurfsplanung, 27 Dimensionierungsgrundlagen, 19 Epoxidharz, 22 Dimensionierungssoftware, 14, 307 Erdung, 277 Direktanschluss an Niederspannungsverteilung, 48 Erforderliche Schutzmaßnahmen, 26 Distanzbügel, 61, 66, 68, 103, 293, 296 Ermitteln von Lastschwerpunkten. 20 Distanzstück, 102, 296 Ermittlung des Bemessungsstroms, 279 Doppelschienensystem Ermittlung des Raumbedarfs, 308 Ermittlung des Spannungsfalls, 267 Technische Daten, 258, 261, 264 Doppelsystem, 171, 217, 287 ETK, 280 Drehmoment für Einbolzenklemme, 128 Drehmoment für Klemmblock, 238 F Durchführungsschutz, 100 Durchlass-Energiekennlinie, 309 Farbe, 148 Durchlass-Stromkennlinie, 309 Federbügel, 196, 251 Fehlersuche, 24 Fernantrieb, 126 Ε Festpunktbügel, 196 Einbaulage, 63, 108, 241 Festpunkte, 160 Festpunktkonsole, 297 Einbaulage flach, 225, 251 Einbaulage hochkant, 225, 251 Feuchte Wärme, 62 Einbaulage horizontal hochkant, 283, 290 Konstant, 197 Einfachsystem, 170, 216, 240, 287 Zyklisch, 197 Einheitstemperaturkurve, 280 Feuergefährdete Betriebsstätten, 272 Einleiterausführung, 45 Feuerwiderstandsklasse, 17, 161, 236, 285, 286, 289 Einleitereinführung, 46 Fixpunktbügel, 294, 297 Einleiterführung, 47, 120, 248 Flachmontage, 60 Einleiterkabel, 73, 125, 144, 146, 147, 211 Flachschirmsprinkler, 306 Einleitersystem, 71 Form U, 79 Form Z. 80 Einsatzbereich, 32 Fremdkörperschutz, 273 Einschienensystem Technische Daten, 253, 256, 259, 262 Fremdverteiler, 118, 181, 245 Einspeisekästen, 45, 160 Fremdverteiler-Anschluss-Stück, 118, 209 Einspeiseleistungen, 26 Funktionserhalt, 19, 24, 161, 280 Einspeisungen, 48, 117, 244 Funktionserhaltsklasse, 161

Einstellstrom der Überlastauslöser, 147 Einzelader-Kabeleinführungsplatte, 220

G	Kabeleinspeisekasten, 290
Gehäuseabmessung, 221	Kabeleinspeisung, 45, 120, 185, 220, 248
Gerade Länge, 218	Kabelhäufung, 24
Gerade Schienenkästen, 41, 112, 160, 225, 242	Kabelinstallation, 24
Gerader Schienenkasten mit Abzweigkasten, 249	Kabelquerschnitt für Kabelschuhe, 70
Gerätekasten, 59	Kabelraum, 45, 123, 124
Gewicht, 24, 146	Kabelverbindung, 221
Gewinkelte Schienenkästen, 43, 243	Kabelverschraubung, 211
Gießharzsystem LRC, 14	Kälte, 62, 197
Gleichzeitigkeitsfaktor, 278	Kennlinien
Gleitbügel, 251, 295	Bewerten, 309
Grenzwerte, 301	Visualisieren, 309
GIGHZWOITE, 50 I	K-Kasten, 44, 78
	Klemmblock, 101, 250
Н	Klemmbügel, 296
	Festpunkt, 196
Halogenfreiheit, 24	Fix, 226
Handantrieb, 126	Flexibel, 196, 226
Hochkantmontage, 60	Klimafestigkeit, 62, 128, 144, 146, 147, 161, 197, 210,
Hochstromsystem, 32	237, 252
Höhenversprünge	Knie versetzt, 116, 244
Vertikal, 108	Kodierwinkel, 114
Horizontale Befestigung, 296	Konformitätserklärungen, 36, 107, 237
Horizontale	Kontaktapparat, 122
Installation, 112, 115, 160, 169, 172, 208, 251, 289	Kundenanschluss
Hüllkurve, 307	Seitlich, 247
	Unten, 246
1	Kuppelkästen, 49, 121
I	Kurzschlussfestigkeit, 27, 33, 63, 65, 67, 117, 131, 137
Impedanz, 277	, 138, 140, 144, 146, 180, 190, 200, 201, 203, 205, 253
Impedanzbelag, 67, 130, 136, 138, 140, 200, 201, 203,	, 256, 259, 262, 271, 279
205	Kurzschluss-Schutz, 271
Inbetriebnahme, 18	
Induktiver Widerstand, 267	
Installation	L
Abgehängte, 298	L
Aufgeständerte, 300	Last-Abstandsprofil, 303
Aufliegende, 299	Lastschwerpunkte ermitteln, 20
Installation,	Leistungsfaktor, 267, 278
horizontal, 112, 115, 160, 169, 172, 208, 251, 289	Leistungsverzeichnis-Erstellung, 27, 36, 106, 236
Installation, vertikal, 113, 116, 160, 170, 174, 291	Leiterkonfiguration, 29, 40, 110, 241
IP68, 21	Leitermaterial, 36, 237
Isolierstoffbeschichtung, 161	Leiterquerschnitt, 162
Isolierstoff-Folie, 22	Leitungseinführung, 73
	Luft- und Kriechstrecken, 306
	Lüftungsanlage, 280
K	
Kabel, 24	M
Kabelbelastungen, 24	M
Kabeleinführung, 73, 123, 124, 188, 211, 221	Magnetfeld, 301
Kabeleinführungsplatte, 71, 73, 220	Magnetfeldemission, 32

Р Magnetfeldmessung, 301 Magnetische Felder, 30, 301 Personenaufzugsanlagen mit Maschennetz, 33 Evakuierungsschaltung, 280 Massivdeckendurchbruch, 288 Planung, 18 Massivwanddurchbruch, 288 Planungsbeispiel, 278 Mauerdurchbruch, 289 Planungskonzept einer Energieversorgung, 20 Maximale Platzbedarf, 24, 289 Befestigungsabstände, 29, 65, 68, 131, 135, 138, 141, Projektierungshinweis, 63 162, 238 PVC-Freiheit, 24 Maximaler Dauerstromwert, 209 Mechanische Verbindung, 250 Mehrgewicht, 149 Q Mehrleitereinführung, 45 Mehrleitereinspeisung, 46 Querschnitt Mehrleiterführung, 120, 248 N. 241 Mehrleiterkabel, 50, 73, 125, 144, 146, 211 PE. 241 Mitteneinspeisekästen, 47 Querschnitte, 211 Mitteneinspeisung, 47, 71 Montage, 23, 24, 27 R Montage auf Betonwand, 103 Montage des Systems BD01, 17 Raumbedarf ermitteln, 308 Mussanforderungen, 23 Reduktionsfaktor, 146, 283 Richtungsänderung, beweglich, 79 Richtungsänderungen, 27, 42, 115, 160, 243 Ν Ringnetz, 33 N- und PE-Querschnitt, 40, 64, 131, 241 Nachrüstbarkeit, 24 S Nenntransformatordaten, 33 Netzaufbau, 24 Salznebelprüfung, 62, 197 Netzberechnung, 307 Schaltvermögen, 125 Netzform, 275, 278 Schaltvermögen des Leistungsschalters, 147 Neutralleiter 2N. 29 Schienenanschluss Neutralleiter N, 29 Oben. 247 Neutralleiterfunktion, 275 Seitlich, 246 Neutralleiter-Überlastung, 32 Schienenkästen, 27 NH-Sicherung, 123, 124 Gewinkelt, 243 NH-Sicherungsunterteil, 53 Schienenkästen mit Abgangsstellen, 207 Normtransformatoren Schienenlage flach, 208, 241 Bemessungsstrom, 28 Schienenlage hochkant, 208, 241 Kurzschlussstrom, 28 Schienenstützer, eingebaut, 111 Nullimpedanz, 135, 138, 140, 200, 201, 203, 205, 253, Schirmsprinkler, 306 256, 259 Schleifenimpedanz, 272 Nullungsbedingung, 24 Schottung, 282 SCHUKO-Steckdosen, 92 Schutzart, 15, 27, 29, 32, 37, 52, 54, 60, 120, 123, 128, 0 144, 146, 147, 149, 160, 162, 197, 210, 238, 252, 253, 256, 259, 262, 272, 273, 278, 306 Oberflächenbehandlung der Stromschienen, 128, 197 Oberschwingungsbehaftete elektronische Schutzarten elektrischer Betriebsmittel Verbraucher, 32 Übersicht, 273 Ohm'scher Widerstand, 267 Schutzarten für Schienenverteiler, 272

Schutzarterhöhung, 60, 108

Schutzgeräte, 271 Schutzleiterfunktion, 275 Schutzorgane, 271 Selektivitätsgrenze, Sichere Verbindung herstellen, 16 Sicherheitsbeleuchtung, 280 Sicherungseinsatz NH, 214 Sicherungssockel, 51 SIMARIS curves, 309 SIMARIS design, 14, 25, 271, 272, 307 SIMARIS project, 308 SIMARIS sketch, 14 Spannungsfall, 30, 267 Spannungsfalldiagramm, 267 Sprinklerprüfung, 305 Sprinklertauglichkeit, 161 Ständerkonstruktion, 300 Sternpunkt, 277 Störbogensichere Verbraucherabgänge, 32 Störpotenzial, 32 Strangbügel, vertikal, 227 Strangführungsplan, 14 Strangmontage, 289 Strangverlauf horizontal, 241 Strangverlauf vertikal, 241 Strombelastbarkeit, 24, 241 Stromschiene, 22 Stromschienenträger, 22 Strom-Zeit-Kennlinie, 307 Stützbügel, 251 System BD01, 12, 15 System BD2, 13 System LD, 13 System LI, 13 Systembausteine, 236 Systemübersicht BD01, 15

Т

Temperaturverhalten, 24
Temperaturwechsel, 62, 197
TIP, 310
T-Kasten, 44, 77, 116, 179, 244
Totally Integrated Power, 310
Transformator, 119
Transformatoranschluss, 246
Transformator-Bemessungsstrom, 28
Transformator-Kurzschlusswechselstrom, 28

Typenschlüssel, 38, 108, 239 Typprüfung, 161

U

Überlast- und Kurzschluss-Schutz, 27 Überlastschutz, 271 Umgebungstemperatur, 128, 146, 147, 162, 197, 210, 238, 252, 283 Umhüllung, 237 Umweltklassen, 62, 128, 197 Unverwechselbarkeit, 122 U-Profil, 196, 224

٧

Variable Verteileranlage, 23 Verbindungselemente, 22 Verbindungstechnik, 16, 106, 237 Verbraucherabgänge bis 1250 A, 13 Verdrehschutz, 52, 122 Vergussmasse, 250 Verguss-Schalen, 250 Verlegungsart, 24 Verlegungskriterien, 24 Vernetzte Schienenverteiler, 12, 18 Versorgungskonzept, 24, 26 Verteiler, 119 Verteileranbindung, 117, 180, 244, 245 Verteilereinspeisung, 48 Verteilungssysteme, 26, 275 Vertikale Befestigung, 293 Vertikale Höhenversprünge, 108 Vertikale Installation, 113, 116, 160, 170, 174, 291 Vertikaler Strangbügel, 227 Vertragsbestandteil, 160 Vorbemerkung für Leistungsverzeichnisse, 36, 106, 236 Voreilender PE / PEN, 122 Vorplanung, 26 Vorteile der Systemlösung, 18

W

Wand

Aufliegende Installation, 299 Wandbefestigung, 61, 251, 293, 296 Wandbefestigung Festpunktbügel, 196 Wanddurchbruch, 288 Warmwiderstand, 267 Wasserdruck, 306 Wasserdruckerhöhungs-Anlagen, 280 Wasserschutz, 273 Wechselstrom-Spannungsnetz, 277 Werkstoff, 63, 148 Werkstoffschienenkästen, 128 Winkel, 116

Ζ

Zertifikate, 36, 107, 237
Z-Kasten, 76, 116, 176
Z-Schienenkästen, 43
Zubehör, 160
Zugentlastung, 70, 73, 211
Zugspannung
Max. zulässige, 281
Zulässiger Spannungsfall, 26, 267
Zulassungspapiere, 17
Zusatzausrüstung, 27, 60, 127, 195, 250
Zusatzflansch, 60

Weitere Informationen

Medium Voltage & Systems: www.siemens.de/mediumvoltage

Wünschen Sie mehr Informationen, wenden Sie sich bitte an unser Customer Support Center: **E-Mail: support.energy@siemens.com**

Kataloge und Infomaterial einfach downloaden: www.siemens.de/lowvoltage/infomaterial

Siemens AG Division Energy Management Medium Voltage & Systems Mozartstr, 31 C 91052 Erlangen Deutschland

© Siemens AG 2007 Änderungen vorbehalten A5E01541017-04

Schienenverteiler Systeme SIVACON 8PS